Totally built-in multi-mode optoelectronic memristor array for diversified in-sensor computing

Totally built-in multi-mode optoelectronic memristor array for diversified in-sensor computing


  • Zhou, F. et al. Optoelectronic resistive random entry reminiscence for neuromorphic imaginative and prescient sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, N. Neuromorphic imaginative and prescient chips. Sci. China Inf. Sci. 61, 060421 (2018).

    Article 

    Google Scholar
     

  • Zhou, F. & Chai, Y. Close to-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article 

    Google Scholar
     

  • Dai, S. et al. Rising iontronic neural units for neuromorphic sensory computing. Adv. Mater. 35, 2300329 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Du, J. et al. A strong neuromorphic imaginative and prescient sensor with optical management of ferroelectric switching. Nano Power 89, 106439 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Photograph-induced non-volatile VO2 section transition for neuromorphic ultraviolet sensors. Nat. Commun. 13, 1729 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jang, H. et al. An atomically skinny optoelectronic machine imaginative and prescient processor. Adv. Mater. 32, 2002431 (2020).

  • Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, R. et al. A framework for the overall design and computation of hybrid neural networks. Nat. Commun. 13, 3427 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Optoelectronic synaptic units for neuromorphic computing. Adv. Intell. Syst 3, 2000099 (2021).

    Article 

    Google Scholar
     

  • Zhang, J., Dai, S., Zhao, Y., Zhang, J. & Huang, J. Latest progress in photonic synapses for neuromorphic methods. Adv. Intell. Syst. 2, 1900136 (2020).

  • Tune, S. et al. Latest progress of optoelectronic and all-optical neuromorphic units: a complete assessment of system buildings, supplies, and purposes. Adv. Intell. Syst. 3, 2000119 (2021).

  • John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Reconfigurable neuromorphic memristor community for ultralow-power good textile electronics. Nat. Commun. 13, 7432 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pi, L. et al. Broadband convolutional processing utilizing band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. All-in-one two-dimensional retinomorphic {hardware} system for movement detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, L. et al. In-sensor reservoir computing for language studying through two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Wearable in-sensor reservoir computing utilizing optoelectronic polymers with through-space charge-transport traits for multi-task studying. Nat. Commun. 14, 468 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lao, J. et al. Ultralow-power machine imaginative and prescient with self-powered sensor reservoir. Adv. Sci. 9, 2106092 (2022).

    Article 

    Google Scholar
     

  • Zhong, Y. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient sign processing. Nat. Electron. 5, 672–681 (2022).

    Article 

    Google Scholar
     

  • Liang, X. et al. Bodily reservoir computing with rising electronics. Nat. Electron. 7, 193–206 (2024).

    Article 

    Google Scholar
     

  • Moon, J. et al. Temporal knowledge classification and forecasting utilizing a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article 

    Google Scholar
     

  • Portner, Ok. et al. Analog nanoscale electro-optical synapses for neuromorphic computing purposes. ACS. Nano. 15, 14776–14785 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, L. et al. All-optically managed memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater. 31, 2005582 (2021).

  • Tan, H. et al. An optoelectronic resistive switching reminiscence with built-in demodulating and arithmetic features. Adv. Mater. 27, 2797–2803 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, J. Y. et al. Dynamic evolution of conducting nanofilament in resistive switching reminiscences. Nano Lett. 13, 3671–3677 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Simanjuntak, F. M., Panda, D., Wei, Ok. H. & Tseng, T. Y. Standing and prospects of ZnO-based resistive switching reminiscence units. Nanoscale Res. Lett. 11, 368 (2016).

  • Xu, N. et al. Traits and mechanism of conduction/set course of in TiN/ZnO/Pt resistance switching random-access reminiscences. Appl. Phys. Lett. 92, 232112 (2008).

  • Zhou, Z., Pei, Y., Zhao, J., Fu, G. & Yan, X. Seen mild responsive optoelectronic memristor system primarily based on CeOx/ZnO construction for synthetic imaginative and prescient system. Appl. Phys. Lett. 118, 191103 (2021).

  • Wang, T.-Y. et al. Reconfigurable optoelectronic memristor for in-sensor computing purposes. Nano Power 89, 106291 (2021).

  • Wang, W. et al. CMOS backend-of-line suitable reminiscence array and logic circuitries enabled by excessive efficiency atomic layer deposited ZnO thin-film transistor. Nat. Commun. 14, 6079 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Emptiness pushed floor dysfunction catalyzes anisotropic evaporation of ZnO (0001) polar floor. Nat. Commun. 13, 5616 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lanza, M. et al. Advisable strategies to check resistive switching units. Adv. Electron. Mater. 5, 1800143 (2019).

  • Kuzum, D., Yu, S. & Wong, H. S. Synaptic electronics: supplies, units and purposes. Nanotechnology 24, 382001 (2013).

  • Russo, P., Xiao, M., Liang, R. & Zhou, N. Y. UV-induced multilevel present amplification reminiscence impact in zinc oxide rods resistive switching units. Adv. Funct. Mater. 28, 1706230 (2018).

  • Oh, I., Pyo, J. & Kim, S. Resistive switching and synaptic traits in ZnO/TaON-based RRAM for neuromorphic system. Nanomaterial 12, 2185 (2022).

  • Web optimization, S. et al. Synthetic optic-neural synapse for coloured and color-mixed sample recognition. Nat. Commun. 9, 5106 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilmaz, A., Javed, O. & Shah, M. Object monitoring. ACM Comput. Surv. 38, 1–45 (2006).

    Article 

    Google Scholar
     

  • Wang, S. et al. Networking retinomorphic sensor with memristive crossbar for brain-inspired visible notion. Natl Sci. Rev. 8, nwaa172 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *