Sturdy and programmable ultrafast nanophotonic matrix of spectral pixels

Sturdy and programmable ultrafast nanophotonic matrix of spectral pixels


  • Guo, T. et al. Giant-scale, panchromatic structural shade manipulation through thermal trimming. Adv. Choose. Mater. 10, 2101546 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. C. et al. Ultrathin planar cavity metasurfaces. Small 14, e1703920 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, F. et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface method. ACS Nano 9, 4111–4119 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex era. Nano Lett. 14, 1394–1399 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic shade gradients and darkish blacks. Mild. Sci. Appl. 11, 118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, Ok. et al. Video-rate switching of high-reflectivity hybrid cavities spanning all main colours. Adv. Mater. 35, e2302028 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, C., Gordon, G. S. D., Wilkinson, T. D. & Bohndiek, S. E. Grayscale-to-color: scalable fabrication of customized multispectral filter arrays. ACS Photon. 6, 3132–3141 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Daqiqeh Rezaei, S. et al. Tunable, value‐efficient, and scalable structural colours for sensing and client merchandise. Adv. Choose. Mater. 7, 1900735 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kats, M. A. & Capasso, F. Optical absorbers based mostly on sturdy interference in ultra-thin movies. Laser Photon. Rev. 10, 735–749 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Qu, Y. et al. Thermal camouflage based mostly on the phase-changing materials GST. Mild. Sci. Appl. 7, 26 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, I. et al. Nanophotonics for mild detection and ranging expertise. Nat. Nanotechnol. 16, 508–524 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, N. et al. Extremely compact all-solid-state beam steering module based mostly on a metafiber. ACS Photon. 9, 3094–3101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Dynamic augmented actuality show by layer-folded metasurface through electrical-driven liquid crystal. Adv. Choose. Mater. 10, 2200418 (2022).

  • Driencourt, L. et al. Electrically tunable multicolored filter utilizing birefringent plasmonic resonators and liquid crystals. ACS Photon. 7, 444–453 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, M., Hendler, N. & Ellenbogen, T. Electrically switchable shade tags based mostly on lively liquid-crystal plasmonic metasurface platform. Adv. Choose. Mater. 8, 1901182 (2020).

  • Guo, T. et al. Broad-tuning, dichroic metagrating Fabry-Perot filter based mostly on liquid crystal for spectral imaging. Prog. Electromagn. Res. 177, 43–51 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, B., Ren, M., Wu, W., Cai, W. & Xu, J. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron. 64, 240362 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Karvounis, A. et al. Electro‐optic metasurfaces based mostly on barium titanate nanoparticle movies. Adv. Choose. Mater. 8, 2000623 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Damgaard-Carstensen, C., Thomaschewski, M., Ding, F. & Bozhevolnyi, S. I. Electrical tuning of Fresnel lens in reflection. ACS Photon. 8, 1576–1581 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Electrically tunable metasurface good absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection part and polarization management in metasurfaces. Nano Lett. 17, 407–413 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. All-solid-state spatial mild modulator with unbiased part and amplitude management for three-dimensional LiDAR functions. Nat. Nanotechnol. 16, 69–76 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, Ok. et al. Switchable plasmonic metasurfaces with excessive chromaticity containing solely ample metals. Nano Lett. 17, 7033–7039 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic color show. Nat. Commun. 8, 14606 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopmann, E. & Elezzabi, A. Y. Plasmochromic nanocavity dynamic mild shade switching. Nano Lett. 20, 1876–1882 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Z. et al. Floating solid-state skinny movies with dynamic structural color. Nat. Nanotechnol. 16, 795–801 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change movies. Nature 511, 206–211 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L., Kang, L., Mayer, T. S. & Werner, D. H. Hybrid metamaterials for electrically triggered multifunctional management. Nat. Commun. 7, 13236 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castillo, S. G. et al. 57‐4: strong state reflective show (SRD) with LTPS Diode backplane. In SID Symposium Digest of Technical Papers Vol. 50 807–810 (Society for Data Show, 2019).

  • Kim, Y. et al. Section modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Nonvolatile electrically reconfigurable built-in photonic change enabled by a silicon PIN diode heater. Adv. Mater. 32, e2001218 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface utilizing low-loss optical phase-change materials. Nat. Nanotechnol. 16, 661–666 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhaskaran, H. & Pernice, W. (eds) Section Change Supplies-Primarily based Photonic Computing (Elsevier, 2024).

  • Bhaskaran, H., Hosseini, P., Broughton, B. & Bodle Applied sciences Ltd. Show equipment. US patent 0384075 A1 (2019).

  • Dong, W. et al. Large bandgap part change materials tuned seen photonics. Adv. Funct. Mater. 29, 1806181 (2019).

    Article 

    Google Scholar
     

  • Cueff, S. et al. VO2 nanophotonics. APL Photon. 5, 0028093 (2020).

  • Howes, A. et al. Optical limiting based mostly on Huygens’ metasurfaces. Nano Lett. 20, 4638–4644 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • King, J. et al. Electrically tunable VO2–steel metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photon. 18, 74–80 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shu, F. Z. et al. Electrically pushed tunable broadband polarization states through lively metasurfaces based mostly on Joule-heat-induced part transition of vanadium dioxide. Laser Photon. Rev. 15, 2100155 (2021).

  • Shu, F. Z. et al. Dynamic plasmonic shade era based mostly on part transition of vanadium dioxide. Adv. Choose. Mater. 6, 1700939 (2018).

  • Zhao, J. et al. Versatile dynamic structural shade based mostly on an ultrathin uneven Fabry-Perot cavity with phase-change materials for temperature notion. Choose. Specific 29, 23273–23281 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kats, M. A. et al. Extremely-thin good absorber using a tunable part change materials. Appl. Phys. Lett. 101, 221101 (2012).

  • Tang, Ok. et al. Temperature-adaptive radiative coating for all-season family thermal regulation. Science 374, 1504–1509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Scalable thermochromic sensible home windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change supplies: in direction of miniaturized beyond-binary reconfigurable built-in photonics. Choose. Specific 29, 20449–20462 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. In-memory photonic dot-product engine with electrically programmable weight banks. Nat. Commun. 14, 2887 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Programmable terahertz metamaterials with non‐unstable reminiscence. Laser Photon. Rev. 16, 2100472 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice using nanostructured phase-change supplies. Nano Lett. 17, 4881–4885 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallman, Ok. A., Miller, Ok. J., Baydin, A., Weiss, S. M. & Haglund, R. F. Sub-picosecond response time of a hybrid VO2:silicon waveguide at 1550 nm. Adv. Choose. Mater. 9, 2001721 (2021).

  • Horade, M., Kojima, M., Kamiyama, Ok., Mae, Y. & Arai, T. Improvement of a novel 2-dimensional micro-heater array system with regional selective heating. Mech. Eng. Res 6, 66–75 (2016).

    Article 

    Google Scholar
     

  • Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, A. et al. Advances in cost-effective built-in spectrometers. Mild. Sci. Appl. 11, 174 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zangeneh Kamali, Ok. et al. Electrically programmable solid-state metasurfaces through flash localised heating. Mild. Sci. Appl. 12, 40 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. Low-cost, high-speed multispectral imager through spatiotemporal modulation based mostly on a shade digital camera. Choose. Specific 31, 42613–42623 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, J., Cadusch, J. J. & Crozier, Ok. B. Detector-only spectrometer based mostly on structurally coloured silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, T. & He, S. Supply information for ‘Sturdy and programmable ultrafast nanophotonic matrix of spectral pixels’. figshare https://doi.org/10.6084/m9.figshare.26183465.v2 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *