Printing of 3D photonic crystals in titania with full bandgap throughout the seen spectrum


  • Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • John, S. Sturdy localization of photons in sure disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H.-G. et al. Electrically pushed single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenzl, C., Hirsch, T. & Wolfbeis, O. S. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53, 3318–3335 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Three-dimensional subwavelength imaging by a photonic-crystal flat lens utilizing unfavourable refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chow, E. et al. Three-dimensional management of sunshine in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Z. et al. From colloidal particles to photonic crystals: advances in self-assembly and their rising functions. Chem. Soc. Rev. 50, 5898–5951 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, supplies, applied sciences, and functions. Adv. Funct. Mater. 33, 2214211 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, A. et al. Massive-scale synthesis of a silicon photonic crystal with an entire three-dimensional bandgap close to 1.5 micrometres. Nature 405, 437–440 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, T., Music, Ok., Clays, Ok. & Tung, C. H. Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic area. Adv. Mater. 21, 1936–1940 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    Article 
    CAS 

    Google Scholar
     

  • He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldovan, M., Urbas, A., Yufa, N., Carter, W. & Thomas, E. Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 165123 (2002).

    Article 

    Google Scholar
     

  • Peng, S. et al. Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap. ACS Photon. 3, 1131–1137 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, J. & Wegener, M. Three-dimensional optical laser lithography past the diffraction restrict. Laser Photon. Rev. 7, 22–44 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their pure origins. Sci. Adv. 2, e1600084 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, J. & Wegener, M. Three-dimensional direct laser writing impressed by stimulated-emission-depletion microscopy. Choose. Mater. Specific 1, 614–624 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Frölich, A., Fischer, J., Zebrowski, T., Busch, Ok. & Wegener, M. Titania woodpiles with full three-dimensional photonic bandgaps within the seen. Adv. Mater. 25, 3588–3592 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Structural colour three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oran, D. et al. 3D nanofabrication by volumetric deposition and managed shrinkage of patterned scaffolds. Science 362, 1281–1285 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vyatskikh, A., Ng, R. C., Edwards, B., Briggs, R. M. & Greer, J. R. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 20, 3513–3520 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooperstein, I., Indukuri, S. C., Bouketov, A., Levy, U. & Magdassi, S. 3D printing of micrometer-sized clear ceramics with on-demand optical-gain properties. Adv. Mater. 32, 2001675 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of clear fused silica glass microstructures. Adv. Mater. 33, 2006341 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mettry, M. et al. Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography. RSC Adv. 11, 22633–22639 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, W. et al. Laser-directed meeting of aligned carbon nanotubes in three dimensions for multifunctional machine fabrication. Adv. Mater. 28, 2002–2009 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article 

    Google Scholar
     

  • Guan, L. et al. Mild and matter co-confined multi-photon lithography. Nat. Commun. 15, 2387 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, M. D. et al. Miniature chiral beamsplitter primarily based on gyroid photonic crystals. Nat. Photon. 7, 801–805 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ohnuki, R., Kobayashi, Y. & Yoshioka, S. Polarization-dependent reflection of I-WP minimal-surface-based photonic crystal. Phys. Rev. E 106, 014123 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B., Zhou, J., Chen, Y. & Peng, Y. Impact of annealing temperature on the construction and optical properties of sputtered TiO2 movies. J. Alloy. Compd. 509, 4060–4064 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Management of refractive index by annealing to attain excessive determine of benefit for TiO2/Ag/TiO2 multilayer movies. Ceram. Int. 42, 14071–14076 (2016).

    Article 
    CAS 

    Google Scholar
     

  • O’Byrne, M. et al. Investigation of the anatase-to-rutile transition for TiO2 sol-gel coatings with refractive index as much as 2.7. Skinny Strong Movies 790, 140193 (2024).

    Article 

    Google Scholar
     

  • Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Ok. T., Ji, C., Banerjee, D. & Guo, L. J. Angular- and polarization-independent structural colours primarily based on 1D photonic crystals. Laser Photon. Rev. 9, 354–362 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y.-Ok. R., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colors primarily based on metallic nanocavities and colored pixels past the diffraction restrict. Sci. Rep. 3, 1194 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, E.-L., Hsu, W.-L. & Chiang, Y.-W. Trapping structural coloration by a bioinspired gyroid microstructure in stable state. ACS Nano 12, 485–493 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl factors and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lu, L. et al. Experimental remark of Weyl factors. Science 349, 622–624 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinne, S. A., García-Santamaría, F. & Braun, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photon. 2, 52–56 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ishizaki, Ok., Koumura, M., Suzuki, Ok., Gondaira, Ok. & Noda, S. Realization of three-dimensional guiding of photons in photonic crystals. Nat. Photon. 7, 133–137 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, G. J. et al. Topological photonic crystals: physics, designs, and functions. Laser Photon. Rev. 16, 2100300 (2022).

    Article 

    Google Scholar
     

  • Bauer, J., Criminal, C. & Baldacchini, T. A sinterless, low-temperature path to 3D print nanoscale optical-grade glass. Science 380, 960–966 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saccone, M. A., Gallivan, R. A., Narita, Ok., Yee, D. W. & Greer, J. R. Additive manufacturing of micro-architected metals through hydrogel infusion. Nature 612, 685–690 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Two-photon microstructure-polymerization initiated by a coumarin by-product/iodonium salt system. Chem. Phys. Lett. 340, 444–448 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Stiff form reminiscence polymers for high-resolution reconfigurable nanophotonics. Nano Lett. 22, 8917–8924 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Ketan, O. & Abu Al‐Rub, R. Ok. MSLattice: a free software program for producing uniform and graded lattices primarily based on triply periodic minimal surfaces. Mater. Des. Course of. Commun. 3, e205 (2021).


    Google Scholar
     

  • Zhang, W. et al. Structural multi-colour invisible inks with submicron 4D printing of form reminiscence polymers. Nat. Commun. 12, 112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles