Phage-based supply techniques: engineering, purposes, and challenges in nanomedicines | Journal of Nanobiotechnology

Phage-based supply techniques: engineering, purposes, and challenges in nanomedicines | Journal of Nanobiotechnology


  • Ju Z, Solar W. Drug supply vectors primarily based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv. 2017;24:1898–908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Nolte RJ, Cornelissen JJ. Virus-based nanocarriers for drug supply. Adv Drug Deliv Rev. 2012;64:811–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug supply system for therapeutic purposes. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.120571.

    Article 

    Google Scholar
     

  • Ullah A, Wang Okay, Wu P, Oupicky D, Solar M.

    CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the remedy of TGFβ-induced HSC-T6 cells activation

    . Int J Nanomed. 2019;14:2927–44.

    Article 
    CAS 

    Google Scholar
     

  • Pugazhendhi A, Edison T, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a possible most cancers remedy for human welfare. Int J Pharm. 2018;539:104–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Wang W-Q, Pei Q, Lord MS, Yu H-J. Engineering nanomedicines by means of boosting immunogenic cell dying for improved most cancers immunotherapy. Acta Pharmacol Sin. 2020;41:986–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M. Paclitaxel-loaded iron oxide nanoparticles for focused breast most cancers remedy. Adv Ther. 2019. https://doi.org/10.1002/adtp.201900081.

    Article 

    Google Scholar
     

  • Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal most cancers remedy. Entrance Chem. 2019;7:167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens Okay, Soenen SJ. Function of inorganic nanoparticle degradation in most cancers remedy. Nanoscale Adv. 2020;2:3734–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. Biomed Res Int. 2014;2014:180549.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed most cancers imaging and remedy. Nano Converg. 2022;9:2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur T, Nafissi N, Wasfi O, Sheldon Okay, Wettig S, Slavcev R. Immunocompatibility of bacteriophages as nanomedicines. J Nanotechnol. 2012;2012:1–13.

    Article 

    Google Scholar
     

  • Dion MB, Oechslin F, Moineau S. Phage range, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monteiro R, Pires DP, Costa AR, Azeredo J. Phage remedy: going temperate? Tendencies Microbiol. 2019;27:368–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu BB, Method JC, Silver PA. Steady neutralization of a virulence consider micro organism utilizing temperate phage within the mammalian intestine. mSystems. 2020. https://doi.org/10.1128/mSystems.00013-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic purposes. Adv Drug Deliv Rev. 2019;145:4–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor focused anticancer photodynamic remedy. Nanoscale. 2022;14:632–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith GP, Petrenko VA. Phage show. Chem Rev. 1997;97:391–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. Managed phage remedy by photothermal ablation of particular bacterial species utilizing gold nanorods focused by chimeric phages. Proc Natl Acad Sci U S A. 2020;117:1951–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug supply. ACS Synth Biol. 2012;1:576–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foglizzo V, Marchio S. Bacteriophages as therapeutic and diagnostic autos in most cancers. Prescription drugs (Basel). 2021. https://doi.org/10.3390/ph14020161.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang H, Li Y, Cosnier S, Yang M, Solar W, Mao C. Exploring phage engineering to advance nanobiotechnology. Mater At present Nano. 2022. https://doi.org/10.1016/j.mtnano.2022.100229.

    Article 

    Google Scholar
     

  • D’Herelle F. On an invisible microbe antagonistic towards dysenteric bacilli: temporary observe by Mr. F. D’Herelle, introduced by Mr. Roux. 1917. Res Microbiol. 2007;158:553–4.

    Article 
    PubMed 

    Google Scholar
     

  • Sunderland KS, Yang M, Mao C. Phage-enabled nanomedicine: from probes to therapeutics in precision medication. Angew Chem Int Ed Engl. 2017;56:1964–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Hu E, Wang Y, Miao S, Liu Y, Hu Y, Liu J, Xu B, Chen D, Shen Y. Rising antibacterial methods with utility of focusing on drug supply system and mixed remedy. Int J Nanomed. 2021;16:6141–56.

    Article 

    Google Scholar
     

  • Branston SD, Wright J, Keshavarz-Moore E. A non-chromatographic methodology for the removing of endotoxins from bacteriophages. Biotechnol Bioeng. 2015;112:1714–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondratova L, Kondratov O, Ragheb R, Zolotukhin S. Elimination of endotoxin from rAAV samples utilizing a easy detergent-based protocol. Mol Ther Strategies Clin Dev. 2019;15:112–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Guo Y, Aoqi L, Ma C, Xiong Z, Yuan D, Zhang C, Zhang J, Dun Y. Modifications of colon in rats with totally different ages in response to lipopolysaccharide. Curr Med Chem. 2023;30:4492–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodyra-Stefaniak Okay, Miernikiewicz P, Drapala J, Drab M, Jonczyk-Matysiak E, Lecion D, Kazmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Klopot A, Gorski A, Dabrowska Okay. Mammalian Host-Versus-Phage immune response determines phage destiny in vivo. Sci Rep. 2015;5:14802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-derived antibacterials: harnessing the simplicity plasticity, and variety of phages. Viruses. 2019;11:268.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage remedy. Biotechnol Lett. 2007;29:995–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The daybreak of phage remedy. Rev Med Virol. 2019;29:e2041.

    Article 
    PubMed 

    Google Scholar
     

  • Loc-Carrillo C, Abedon ST. Professionals and cons of phage remedy. Bacteriophage. 2014;1:111–4.

    Article 

    Google Scholar
     

  • Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2014;1:31–45.

    Article 

    Google Scholar
     

  • Kan L, Barr JJ. A mammalian cell’s information on learn how to course of a bacteriophage. Ann Rev Virol. 2023;10:183–98.

    Article 
    CAS 

    Google Scholar
     

  • Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled cost reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci Adv. 2022. https://doi.org/10.1126/sciadv.abq2005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapinoro R, Volcy Okay, Rodrigo WWSI, Schlesinger JJ, Dewhurst S. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene switch in mammalian cells. Virology. 2008;373:274–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehti TA, Pajunen MI, Skog MS, Finne J. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-02057-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadwell Okay, Bichet MC, Adderley J, Avellaneda-Franco L, Magnin-Bougma I, Torriero-Smith N, Gearing LJ, Deffrasnes C, David C, Pepin G, Gantier MP, Lin RCY, Patwa R, Moseley GW, Doerig C, Barr JJ. Mammalian cells internalize bacteriophages and use them as a useful resource to reinforce mobile progress and survival. PLOS Biol. 2023. https://doi.org/10.1371/journal.pbio.3002341.

    Article 

    Google Scholar
     

  • Dong X, Pan P, Ye JJ, Zhang QL, Zhang XZ. Hybrid M13 bacteriophage-based vaccine platform for personalised most cancers immunotherapy. Biomaterials. 2022;289:121763.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev. 2014;114:1258–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Liu P, Solar L, Li C, Petrenko VA, Liu A. Bio-mimetic nanostructure self-assembled from Au@Ag heterogeneous nanorods and phage fusion proteins for focused tumor optical detection and photothermal remedy. Sci Rep. 2014;4:6808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Yang M, Lei F, Wang Y, Yang M, Mao C. Extremely efficient stroke remedy enabled by genetically engineered viral nanofibers. Adv Mater. 2022. https://doi.org/10.1002/adma.202201210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Pan P, Zheng D-W, Bao P, Zeng X, Zhang X-Z. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to rework tumor-immune microenvironment towards colorectal most cancers. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba1590.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngweniform P, Abbineni G, Cao B, Mao C. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for focused drug supply. Small. 2009;5:1963–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev. 2019;145:40–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yata T, Lee KY, Dharakul T, Songsivilai S, Bismarck A, Mintz PJ, Hajitou A. Hybrid nanomaterial complexes for superior phage-guided gene supply. Mol Ther Nucleic Acids. 2014;3:e185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to rework tumor-immune microenvironment towards colorectal most cancers. Sci Adv. 2020;6:eaba1590.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck Okay, Cohen Hubal EA, Paunov VN, Stoyanov SD, Velev OD. An environmentally benign antimicrobial nanoparticle primarily based on a silver-infused lignin core. Nat Nanotechnol. 2015;10:817–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Xu Y, Wu P, Wang Okay. Self-assembled PEI nanomicelles with a fluorinated core for improved siRNA supply. J Drug Supply Sci Technol. 2020. https://doi.org/10.1016/j.jddst.2019.101403.

    Article 

    Google Scholar
     

  • Korkmaz N. Recombinant bacteriophages as gold binding bio-templates. Colloids Surf B Biointerfaces. 2013;112:219–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh MH, Yu JH, Kim I, Nam YS. Genetically programmed clusters of gold nanoparticles for most cancers cell-targeted photothermal remedy. ACS Appl Mater Interfaces. 2015;7:22578–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi Y, Lee SY. Biosynthesis of inorganic nanomaterials utilizing microbial cells and bacteriophages. Nat Rev Chem. 2020;4:638–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Pan P, Zhang Q, Ye JJ, Zhang XZ. Engineered dwelling bacteriophage-enabled self-adjuvanting hydrogel for transforming tumor microenvironment and most cancers remedy. Nano Lett. 2023;23:1219–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li T, Wu L, Suthiwangcharoen N, Bruckman MA, Money D, Hudson JS, Ghoshroy S, Wang Q. Managed meeting of rodlike viruses with polymers. Chem Commun (Camb). 2009. https://doi.org/10.1039/b901995b.

    Article 
    PubMed 

    Google Scholar
     

  • Suthiwangcharoen N, Li T, Li Okay, Thompson P, You S, Wang Q. M13 bacteriophage-polymer nanoassemblies as drug supply autos. Nano Res. 2011;4:483–93.

    Article 
    CAS 

    Google Scholar
     

  • Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled cost reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci Adv. 2022;8:eabq2005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carmody CM, Goddard JM, Nugen SR. Bacteriophage capsid modification by genetic and chemical strategies. Bioconjug Chem. 2021;32:466–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohan Okay, Weiss GA. Chemically modifying viruses for various purposes. ACS Chem Biol. 2016;11:1167–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen GL, Grahn AK, Kourentzi Okay, Willson RC, Waldrop S, Guo J, Kay BK. Increasing the chemical range of M13 bacteriophage. Entrance Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.961093.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Okay, Chen Y, Li S, Nguyen HG, Niu Z, You S, Mello CM, Lu X, Wang Q. Chemical modification of M13 bacteriophage and its utility in most cancers cell imaging. Bioconjug Chem. 2010;21:1369–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo SY, Chung W-J, Lee D-Y. Chemical modulation of M13 bacteriophage and its practical alternatives for nanomedicine. Int J Nanomed. 2014. https://doi.org/10.2147/IJN.S73883.

    Article 

    Google Scholar
     

  • Bernard JML, Francis MB. Chemical methods for the covalent modification of filamentous phage. Entrance Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00734.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang H, Zhan S, Feng L, Chen X, Guo Q, Guo Y, He Q, Xiong Y. Chemical modification of M13 bacteriophage as nanozyme container for dramatically enhanced sensitivity of colorimetric immunosensor. Sensors Actuators B Chem. 2021. https://doi.org/10.1016/j.snb.2021.130368.

    Article 

    Google Scholar
     

  • Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. Chemically immobilized T4-bacteriophage for particular Escherichia coli detection utilizing floor plasmon resonance. Analyst. 2011;136:486–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei B, Wei Y, Zhang Okay, Wang J, Xu R, Zhan S, Lin G, Wang W, Liu M, Wang L, Zhang R, Li J. Growth of an antisense RNA supply system utilizing conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell penetrating peptide. Biomed Pharmacother. 2009;63:313–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin X, Newton JR, Montgomery-Smith S, Smith GP. A generalized kinetic mannequin for amine modification of proteins with utility to phage show. Biotechniques. 2009;46:175–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lockett MR, Phillips MF, Jarecki JL, Peelen D, Smith LM. A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. Langmuir. 2007;24:69–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrico ZM, Farkas ME, Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB. N-terminal labeling of filamentous phage to create most cancers marker imaging brokers. ACS Nano. 2012;6:6675–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Li H-D, Cao Y, Wang Z-Y, Yang T, Wang J-H. M13 phage: a flexible constructing block for a extremely particular evaluation platform. Anal Bioanal Chem. 2023;415:3927–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran B, Yuan Y, Xia W, Li M, Yao Q, Wang Z, Wang L, Li X, Xu Y, Peng X. A photograph-sensitizable phage for multidrug-resistant Acinetobacter baumannii remedy and biofilm ablation. Chem Sci. 2021;12:1054–61.

    Article 
    CAS 

    Google Scholar
     

  • Vaks L, Benhar I. In vivo traits of focused drug-carrying filamentous bacteriophage nanomedicines. J Nanobiotechnol. 2011. https://doi.org/10.1186/1477-3155-9-58.

    Article 

    Google Scholar
     

  • Niu Z, Bruckman MA, Harp B, Mello CM, Wang Q. Bacteriophage M13 as a scaffold for getting ready conductive polymeric composite fibers. Nano Res. 2008;1:235–41.

    Article 
    CAS 

    Google Scholar
     

  • Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB. Twin-surface modified virus capsids for focused supply of photodynamic brokers to most cancers cells. ACS Nano. 2010;4:6014–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. Managed phage remedy by photothermal ablation of particular bacterial species utilizing gold nanorods focused by chimeric phages. Proc Natl Acad Sci. 2020;117:1951–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooker JM, Kovacs EW, Francis MB. Inside Floor Modification of Bacteriophage MS2. J Am Chem Soc. 2004;126:3718–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murugesan M, Abbineni G, Nimmo SL, Cao B, Mao C. Virus-based photo-responsive nanowires shaped by linking site-directed mutagenesis and chemical response. Sci Experiences. 2013. https://doi.org/10.1038/srep01820.

    Article 

    Google Scholar
     

  • Kitov PI, Vinals DF, Ng S, Tjhung KF, Derda R. Speedy, hydrolytically steady modification of aldehyde-terminated proteins and phage libraries. J Am Chem Soc. 2014;136:8149–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Y, Wang J, Li Y, Yang C-T, Zhou X. Modified bacteriophage for tumor detection and focused remedy. Nanomaterials. 2023. https://doi.org/10.3390/nano13040665.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandman KE, Benner JS, Noren CJ. Phage show of selenopeptides. J Am Chem Soc. 2000;122:960–1.

    Article 
    CAS 

    Google Scholar
     

  • Beech J, Saleh L, Frentzel J, Figler H, Corrêa IR, Baker B, Ramspacher C, Marshall M, Dasa S, Linden J, Noren CJ, Kelly KA. Multivalent site-specific phage modification enhances the binding affinity of receptor ligands. Bioconjug Chem. 2015;26:529–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian F, Tsao M-L, Schultz PG. A phage show system with unnatural amino acids. J Am Chem Soc. 2004;126:15962–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urquhart T, Daub E, Honek JF. Bioorthogonal Modification of the Main Sheath Protein of Bacteriophage M13: extending the Versatility of Bionanomaterial Scaffolds. Bioconjug Chem. 2016;27:2276–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XS, Chen PHC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang DS, Hayatshahi HS, Shen Y, Liu J, Liu WR. A genetically encoded, phage-displayed cyclic-peptide library. Angew Chem Int Ed. 2019;58:15904–9.

    Article 
    CAS 

    Google Scholar
     

  • Peng H, Chen IA. Phage engineering and the evolutionary arms race. Curr Opin Biotechnol. 2021;68:23–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Okay-P, Cha J-D, Jang E-H, Klumpp J, Hagens S, Hardt W-D, Lee Okay-Y, Loessner MJ. PEGylation of bacteriophages will increase blood circulation time and reduces T-helper sort 1 immune response. Microb Biotechnol. 2008;1:247–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayanna PK, Bedi D, Deinnocentes P, Chicken RC, Petrenko VA. Panorama phage ligands for PC3 prostate carcinoma cells. Protein Eng Des Sel. 2010;23:423–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spruijt RB, Wolfs CJAM, Verver JWG, Hemminga MA. Accessibility and atmosphere probing utilizing cysteine residues launched alongside the putative transmembrane area of the main coat protein of bacteriophage M13. Biochemistry. 1996;35:10383–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinis C, Rutherford T, Freund S, Winter G. Phage-encoded combinatorial chemical libraries primarily based on bicyclic peptides. Nat Chem Biol. 2009;5:502–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng S, Jafari MR, Matochko WL, Derda R. Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage. ACS Chem Biol. 2012;7:1482–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rostovtsev VV, Inexperienced LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition course of: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem. 2002;114:2708–11.

    Article 

    Google Scholar
     

  • Sunderland KS, Yang M, Mao C. Phage-enabled nanomedicine: from probes to therapeutics in precision medication. Angew Chem Int Ed. 2017;56:1964–92.

    Article 
    CAS 

    Google Scholar
     

  • Jepson CD, March JB. Bacteriophage lambda is a extremely steady DNA vaccine supply automobile. Vaccine. 2004;22:2413–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseinidoust Z. Phage-mediated gene remedy. Curr Gene Ther. 2017;17:120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prel A, Caval V, Gayon R, Ravassard P, Duthoit C, Payen E, Maouche-Chretien L, Creneguy A, Nguyen TH, Martin N, Piver E, Sevrain R, Lamouroux L, Leboulch P, Deschaseaux F, Bouillé P, Sensébé L, Pagès J-C. Extremely environment friendly in vitro and in vivo supply of practical RNAs utilizing new versatile MS2-chimeric retrovirus-like particles. Mol Ther Strategies Clin Dev. 2015;2:15039. https://doi.org/10.1038/mtm.2015.39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao C-Y, Pan Y-C, Hsiao Y-H, Lim S-Okay, Cheng T-W, Huang S-W, Wu SM-Y, Solar C-P, Tao M-H, Mou KY. Enchancment of gene supply by minimal bacteriophage particles. ACS Nano. 2023;17:14532.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC, Restel BH, Ozawa MG, Moya CA, Rangel R, Solar Y, Zaoui Okay, Schmidt M, von Kalle C, Weitzman MD, Gelovani JG, Pasqualini R, Arap W. A hybrid vector for ligand-directed tumor focusing on and molecular imaging. Cell. 2006;125:385–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG, Alauddin MM, Pasqualini R, Arap W. Design and building of focused AAVP vectors for mammalian cell transduction. Nat Protoc. 2007;2:523–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kia A, Yata T, Hajji N, Hajitou A. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in most cancers cells. Viruses. 2013;5:2561–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • G. Petrov, M. Dymova, V. Richter, Bacteriophage-Mediated Most cancers Gene Remedy, Worldwide Journal of Molecular Sciences, 23 (2022).

  • Bazan J, Całkosiński I, Gamian A. Phage show—a strong approach for immunotherapy. Hum Vaccin Immunother. 2014;8:1817–28.

    Article 

    Google Scholar
     

  • Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage show: an vital software within the discovery of peptides with anti-HIV exercise. Biotechnol Adv. 2018;36:1847–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternate options to antibodies. Drug Discovery At present. 2004;9:525–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug supply autos throughout organic boundaries. J Pharm Investig. 2017;48:89–111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, pure nanoparticles, for viral vaccine methods. Nanoscale. 2022;14:5942–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du B, Han H, Wang Z, Kuang L, Wang L, Yu L, Wu M, Zhou Z, Qian M. Focused drug supply to hepatocarcinomain vivoby phage-displayed particular binding peptide. Mol Most cancers Res. 2010;8:135–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayanna PK, Bedi D, Gillespie JW, DeInnocentes P, Wang T, Torchilin VP, Chicken RC, Petrenko VA. Panorama phage fusion protein-mediated focusing on of nanomedicines enhances their prostate tumor cell affiliation and cytotoxic effectivity, Nanomedicine: Nanotechnology. Biol Med. 2010;6:538–46.

    CAS 

    Google Scholar
     

  • Wang T, D’Souza GGM, Bedi D, Fagbohun OA, Potturi LP, Papahadjopoulos-Sternberg B, Petrenko VA, Torchilin VP. Enhanced binding and killing of goal tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein. Nanomedicine. 2010;5:563–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emerich DF, Thanos CG. Multifunctional peptide-based nanosystems for bettering supply and molecular imaging. Curr Opin Mol Ther. 2008;10:132–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Nam HY, McGinn A, Kim P-H, Kim SW, Bull DA. Main cardiomyocyte-targeted bioreducible polymer for environment friendly gene supply to the myocardium. Biomaterials. 2010;31:8081–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedi D, Gillespie JW, Petrenko VA, Ebner A, Leitner M, Hinterdorfer P, Petrenko VA. Focused supply of siRNA into breast most cancers cells through phage fusion proteins. Mol Pharm. 2013;10:551–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rakonjac J. Filamentous bacteriophages: biology and purposes. Encyclopedia Life Sci. 2022. https://doi.org/10.1002/9780470015902.a0029482.

    Article 

    Google Scholar
     

  • Kehoe JW, Kay BK. Filamentous phage show within the new millennium. Chem Rev. 2005;105:4056–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobbs Z, Abedon ST, Millard A. Variety of phage an infection varieties and related terminology: the issue with ‘Lytic or lysogenic.’ FEMS Microbiol Lett. 2016;363:fnw047.

    Article 
    PubMed 

    Google Scholar
     

  • Krieg AM. Toll-like receptor 9 (TLR9) agonists within the remedy of most cancers. Oncogene. 2008;27:161–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang C, Guo W, Yu X, Guo C, Zhou N, Guo X, Huang R-L, Li Q, Zhu Y. Engineered M13 phage as a novel therapeutic bionanomaterial for medical purposes: from tissue regeneration to most cancers remedy. Mater At present Bio. 2023;20:100612. https://doi.org/10.1016/j.mtbio.2023.100612.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess KL, Jewell CM. Phage show as a software for vaccine and immunotherapy growth. Bioeng Trans Med. 2019. https://doi.org/10.1002/btm2.10142.

    Article 

    Google Scholar
     

  • Wang HY, Chang Y-C, Hu C-W, Kao C-Y, Yu Y-A, Lim S-Okay, Mou KY. Growth of a novel cytokine automobile utilizing filamentous phage show for colorectal most cancers remedy. ACS Synth Biol. 2021;10:2087–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidhu SS, Weiss GA, Wells JA. Excessive copy show of enormous proteins on phage for practical alternatives 1 1Edited by P. E. Wright. Jo Mol Biol. 2000;296:487–95.

    Article 
    CAS 

    Google Scholar
     

  • Kwaśnikowski P, Kristensen P, Markiewicz WT. Multivalent show system on filamentous bacteriophage pVII minor coat protein. J Immunol Strategies. 2005;307:135–43.

    Article 
    PubMed 

    Google Scholar
     

  • Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A way for the technology of combinatorial antibody libraries utilizing pIX phage show. Proc Natl Acad Sci. 2002;99:12612–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullah A, Chen G, Yibang Z, Hussain A, Shafiq M, Raza F, Liu D, Wang Okay, Cao J, Qi X. A brand new method primarily based on CXCR4-targeted mixture liposomes for the remedy of liver fibrosis. Biomater Sci. 2022;10:2650–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolhar P, Anselmo AC, Gupta V, Pant Okay, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Utilizing form results to focus on antibody-coated nanoparticles to lung and mind endothelium. Proc Natl Acad Sci. 2013;110:10753–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping most cancers nanomedicine: the impact of particle form on the in vivo journey of nanoparticles. Nanomedicine. 2014;9:121–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Liu L, Ma M, Zhang Y. Modulation of blood-brain tumor barrier for supply of magnetic hyperthermia to mind most cancers. J Management Launch. 2023;355:248–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain KK. An summary of drug supply techniques. Drug Supply Syst. 2020. https://doi.org/10.1007/978-1-4939-9798-5_1.

    Article 

    Google Scholar
     

  • Namdee Okay, Khongkow M, Boonrungsiman S, Nittayasut N, Asavarut P, Temisak S, Saengkrit N, Puttipipatkhachorn S, Hajitou A, Ruxrungtham Okay, Yata T. Thermoresponsive bacteriophage nanocarrier as a gene supply vector focused to the gastrointestinal tract. Mol Ther Nucleic Acids. 2018;12:33–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandle A, Hanna E, Lorang D, Hajitou A, Moya CA, Pasqualini R, Arap W, Adem A, Starker E, Hewitt S, Libutti SK. Tumor vasculature-targeted supply of tumor necrosis factor-α*. Most cancers. 2009;115:128–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trepel M, Stoneham CA, Eleftherohorinou H, Mazarakis ND, Pasqualini R, Arap W, Hajitou A. A heterotypic bystander impact for tumor cell killing after adeno-associated virus/phage–mediated, vascular-targeted suicide gene switch. Mol Most cancers Ther. 2009;8:2383–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, Aboagye EO, Suwan Okay, Hajitou A. Efficacy of systemic temozolomide-activated phage-targeted gene remedy in human glioblastoma. EMBO Mol Med. 2019. https://doi.org/10.15252/emmm.201708492.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly L-Z, Calin GA, Berindan-Neagoe I. Progresses in the direction of secure and environment friendly gene remedy vectors. Oncotarget. 2015;6:30675–703.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Du X, Zhou Y, Cao X, Shen Y, Zhu H, Huang H. Polyaspartic acid-stabilized CaCO3-containing in situ hydrogel for cover and remedy of gastric ulcer. Mol Pharm. 2023;20:2105–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev. 2019;145:73–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian L, He L, Jackson Okay, Saif A, Khan S, Wan Z, Didar TF, Hosseinidoust Z. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials focusing on multidrug-resistant micro organism. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-34803-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for focused supply of therapeutic cargos. Adv Drug Supply Rev. 2016;106:45–62.

    Article 
    CAS 

    Google Scholar
     

  • Yue H, Li Y, Yang M, Mao C. T7 phage as an rising nanobiomaterial with genetically tunable goal specificity. Adv Sci. 2021. https://doi.org/10.1002/advs.202103645.

    Article 

    Google Scholar
     

  • Deng X, Wang L, You X, Dai P, Zeng Y. Advances within the T7 phage show system (Overview). Mol Med Experiences. 2017;17(1):714–20.


    Google Scholar
     

  • Li W, Caberoy NB. New perspective for phage show as an environment friendly and versatile expertise of practical proteomics. Appl Microbiol Biotechnol. 2009;85:909–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Bao X, Wang Y, Xu Y, Deng B, Lu Y, Hou J. Engineering T7 bacteriophage as a possible DNA vaccine focusing on supply vector. Virol J. 2018. https://doi.org/10.1186/s12985-018-0955-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Cao P, Zhu Y, Lu W, Gu N, Mao C. Phage-mediated counting by the bare eye of miRNA molecules at attomolar concentrations in a Petri dish. Nat Mater. 2015;14:1058–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong SC, Wakefield D, Klein J, Monahan SD, Rozema DB, Lewis DL, Higgs L, Ludtke J, Sokoloff AV, Wolff JA. Hepatocyte focusing on of nucleic acid complexes and liposomes by a T7 phage p17 peptide. Mol Pharm. 2006;3:386–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Xu Y, Wang X, Li Y, Wang L, Li X. Development and characterization of a extremely reactive chicken-derived single-chain variable fragment (scFv) antibody towards Staphylococcus aureus developed with the T7 phage show system. Int Immunopharmacol. 2016;35:149–54.

    Article 
    PubMed 

    Google Scholar
     

  • Pei R, Lamas-Samanamud GR, Pettinari MJ. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80:5340–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasa SSK, Jin Q, Chen C-T, Chen L. Goal-specific copper hybrid T7 phage particles. Langmuir. 2012;28:17372–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Black LW, Rao VB. Construction, meeting, and DNA packaging of the bacteriophage T4 head. Bacteriophages Half A. 2012;82:119–53.

    Article 
    CAS 

    Google Scholar
     

  • Rao VB, Black LW. Construction and meeting of bacteriophage T4 head. Virol J. 2010. https://doi.org/10.1186/1743-422X-7-356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yap ML, Rossmann MG. Construction and performance of bacteriophage T4. Future Microbiol. 2014;9:1319–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubori T, Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, Chopra AK, Rao VB. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from yersinia pestis as subsequent technology plague vaccines. PLoS Pathogens. 2013. https://doi.org/10.1371/journal.ppat.1003495.

    Article 

    Google Scholar
     

  • Wu J, Tu C, Yu X, Zhang M, Zhang N, Zhao M, Nie W, Ren Z. Bacteriophage T4 nanoparticle capsid floor SOC and HOC bipartite show with enhanced classical swine fever virus immunogenicity: a strong immunological method. J Virol Strategies. 2007;139:50–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao VB, Zhu J. Bacteriophage T4 as a nanovehicle for supply of genes and therapeutics into human cells. Curr Opinion Virol. 2022. https://doi.org/10.1016/j.coviro.2022.101255.

    Article 

    Google Scholar
     

  • Hou X-L, Xie X-T, Tan L-F, Zhang F, Fan J-X, Chen W, Hu Y-G, Zhao Y-D, Liu B, Xu Q-R. T4 phage show expertise for enhanced photodynamic remedy of breast most cancers. ACS Mater Lett. 2023;5:2270–81.

    Article 
    CAS 

    Google Scholar
     

  • Tao P, Mahalingam M, Marasa BS, Zhang Z, Chopra AK, Rao VB. In vitro and in vivo supply of genes and proteins utilizing the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci. 2013;110:5846–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Tao P, Mahalingam M, Sha J, Kilgore P, Chopra AK, Rao V. A prokaryotic-eukaryotic hybrid viral vector for supply of enormous cargos of genes and proteins into human cells. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aax0064.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based synthetic viral vectors for human genome reworking. Nat Commun. 2023. https://doi.org/10.1038/s41467-023-38364-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicastro J, Sheldon Okay, El-zarkout FA, Sokolenko S, Aucoin MG, Slavcev R. Development and evaluation of a genetically tuneable lytic phage show system. Appl Microbiol Biotechnol. 2013;97:7791–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn IS. Meeting of practical bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the main tail protein. J Mol Biol. 1995;248:497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicastro J, Sheldon Okay, Slavcev RA. Bacteriophage lambda show techniques: developments and purposes. Appl Microbiol Biotechnol. 2014;98:2853–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavoni E, Vaccaro P, D’Alessio V, De Santis R, Minenkova O. Simultaneous show of two giant proteins on the top and tail of bacteriophage lambda. BMC Biotechnol. 2013. https://doi.org/10.1186/1472-6750-13-79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • March JB, Clark JR, Jepson CD. Genetic immunisation towards hepatitis B utilizing entire bacteriophage λ particles. Vaccine. 2004;22:1666–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark JR, Bartley Okay, Jepson CD, Craik V, March JB. Comparability of a bacteriophage-delivered DNA vaccine and a commercially obtainable recombinant protein vaccine towards hepatitis B. FEMS Immunol Med Microbiol. 2011;61:197–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merril CR, Geier MR, Petricciani JC. Bacterial virus gene expression in human cells. Nature. 1971;233:398–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankes HA, Zanghi CN, Santos Okay, Capella C, Duke CMP, Dewhurst S. In vivo gene supply and expression by bacteriophage lambda vectors. J Appl Microbiol. 2007;102:1337–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaemi A, Soleimanjahi H, Gill P, Hassan Z, Jahromi SRM, Roohvand F. Recombinant λ-phage nanobioparticles for tumor remedy in mice fashions. Genetic Vaccines Ther. 2010. https://doi.org/10.1186/1479-0556-8-3.

    Article 

    Google Scholar
     

  • Galaway FA, Stockley PG. MS2 viruslike particles: a strong, semisynthetic focused drug supply platform. Mol Pharm. 2012;10:59–68.

    Article 
    PubMed 

    Google Scholar
     

  • Valegård Okay, Liljas L, Fridborg Okay, Unge T. The three-dimensional construction of the bacterial virus MS2. Nature. 1990;345:36–41.

    Article 
    PubMed 

    Google Scholar
     

  • Solar S, Li W, Solar Y, Pan Y, Li J. A brand new RNA vaccine platform primarily based on MS2 virus-like particles produced in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2011;407:124–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashemi Okay, Ghahramani Seno MM, Ahmadian MR, Malaekeh-Nikouei B, Bassami MR, Dehghani H, Afkhami-Goli A. Optimizing the synthesis and purification of MS2 virus like particles. Sci Experiences. 2021. https://doi.org/10.1038/s41598-021-98706-1.

    Article 

    Google Scholar
     

  • Fu Y, Li J. A novel supply platform primarily based on Bacteriophage MS2 virus-like particles. Virus Res. 2016;211:9–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, Shao L, Chen Y, Han W, Zhou Y, Liu T, Gu J, Zhu H. Sequential twin supply system primarily based on siCOX-2-loaded gold nanostar and thermal-sensitive liposomes overcome hypoxia-mediated multidrug resistance in tumors. Mol Pharm. 2022;19:2390–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Res. 1993;21:4621–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Solar Y, Jia T, Zhang R, Zhang Okay, Wang L. Messenger RNA vaccine primarily based on recombinant MS2 virus-like particles towards prostate most cancers. Int J Most cancers. 2014;134:1683–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Y-M, Zhang G-G, Huang X-J, Chen L, Chen H-T. Promising MS2 mediated virus-like particle vaccine towards foot-and-mouth illness. Antiviral Res. 2015;117:39–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witus LS, Francis MB. Utilizing synthetically modified proteins to make new supplies. Acc Chem Res. 2011;44:774–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Hsiao SC, Carrico ZM, Francis MB. Genome-free viral capsids as multivalent carriers for taxol supply. Angew Chem. 2009;121:9657–61.

    Article 

    Google Scholar
     

  • Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira JDC, Chackerian B, Wharton W, Peabody DS. Cell-specific supply of various cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5:5729–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs EW, Hooker JM, Romanini DW, Holder PG, Berry KE, Francis MB. Twin-surface-modified bacteriophage MS2 as an Excellent scaffold for a viral capsid-based drug supply system. Bioconjug Chem. 2007;18:1140–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in most cancers: mechanisms and tackling methods. Pharmacol Rep. 2020;72:1125–51.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Gao S, Lv J, Lin Y, Zhou L, Han L. Phage show expertise and its purposes in most cancers immunotherapy. Anticancer Brokers Med Chem. 2019;19:229–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Lin M. The synthesis of nano-doxorubicin and its anticancer impact. Anticancer Brokers Med Chem. 2021;21:2466–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva MD, Voitova AA, Dymova MA, Richter VA, Kuligina EV. Tumor-targeting peptides search technique for the supply of therapeutic and diagnostic molecules to tumor cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010314.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bar H, Yacoby I, Benhar I. Killing most cancers cells by focused drug-carrying phage nanomedicines. BMC Biotechnol. 2008. https://doi.org/10.1186/1472-6750-8-37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng D-W, Dong X, Pan P, Chen Okay-W, Fan J-X, Cheng S-X, Zhang X-Z. Phage-guided modulation of the intestine microbiota of mouse fashions of colorectal most cancers augments their responses to chemotherapy. Nat Biomed Eng. 2019;3:717–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Hartner WC, Gillespie JW, Praveen KP, Yang S, Mei LA, Petrenko VA, Torchilin VP. Enhanced tumor supply and antitumor exercise in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein, nanomedicine: nanotechnology. Biol Med. 2014;10:421–30.

    CAS 

    Google Scholar
     

  • Galon J, Bruni D. Approaches to deal with immune sizzling, altered and chilly tumours with mixture immunotherapies. Nat Rev Drug Discovery. 2019;18:197–218.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Z, Music C, Wang C, Hu Y, Wu J. Hydrogel-based managed drug supply for most cancers remedy: a assessment. Mol Pharm. 2020;17:373–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Ullah A, Xu G, Xu Z, Wang F, Liu T, Su Y, Zhang T, Wang Okay. Topically utilized liposome-in-hydrogels for systematically focused tumor photothermal remedy. Drug Supply. 2021;28:1923–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Yang Y, Guo Y, Lu S, Du Y, Li J-J, Zhang X, Leung NLC, Zhao Z, Niu G, Yang S, Weng Z, Kwok RTK, Lam JWY, Xie G, Tang BZ. Phage-guided focusing on, discriminative imaging, and synergistic killing of micro organism by AIE bioconjugates. J Am Chem Soc. 2020;142:3959–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin L, Cao F, Gao Y, Zhang C, Qian Z, Zhang J, Mao Z. Microenvironment-activated nanozyme-armed bacteriophages effectively fight bacterial an infection. Adv Mater. 2023. https://doi.org/10.1002/adma.202301349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu MY, Chen L, Chen Q, Hu R, Xu X, Wang Y, Li J, Feng S, Dong C, Zhang XL, Li Z, Wang L, Chen S, Gu M. Engineered phage with aggregation-induced emission photosensitizer in cocktail remedy towards sepsis. Adv Mater. 2022. https://doi.org/10.1002/adma.202208578.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng H, Rossetto D, Mansy SS, Jordan MC, Roos KP, Chen IA. Remedy of wound infections in a mouse mannequin utilizing Zn2+-releasing phage certain to gold nanorods. ACS Nano. 2022;16:4756–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Qu X, Cao B, Yang T, Bao Q, Yue H, Zhang L, Zhang G, Wang L, Qiu P, Zhou N, Yang M, Mao C. Selectively suppressing tumor angiogenesis for focused breast most cancers remedy by genetically engineered phage. Adv Mater. 2020. https://doi.org/10.1002/adma.202001260.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murgas P, Bustamante N, Araya N, Cruz-Gómez S, Durán E, Gaete D, Oyarce C, López E, Herrada AA, Ferreira N, Pieringer H, Lladser A. A filamentous bacteriophage focused to carcinoembryonic antigen induces tumor regression in mouse fashions of colorectal most cancers. Most cancers Immunol Immunother. 2017;67:183–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo S, Dai G, Wang L, Wen Y, Huang Z, Yang W, Ma W, Ren X. Suppression of angiogenesis and tumor progress by recombinant T4 phages displaying extracellular area of vascular endothelial progress issue receptor 2. Adv Virol. 2018;164:69–82.


    Google Scholar
     

  • Tsedev U, Lin C-W, Hess GT, Sarkaria JN, Lam FC, Belcher AM. Phage particles of managed size and genome for In Vivo focused glioblastoma imaging and therapeutic supply. ACS Nano. 2022;16:11676–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies SC, Fowler T, Watson J, Livermore DM, Walker D. Annual report of the chief medical officer: an infection and the rise of antimicrobial resistance. Lancet. 2013;381:1606–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lu P, Zhang X, Li F, Xu Okay-F, Li Y-H, Liu X, Yang J, Zhu B, Wu F-G. Cationic liposomes with totally different lipid ratios: antibacterial exercise antibacterial mechanism, and cytotoxicity evaluations. Prescription drugs. 2022;15:1556.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage remedy: a renewed method to fight antibiotic-resistant micro organism. Cell Host Microbe. 2019;25:219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brockhurst MA, Morgan AD, Fenton A, Buckling A. Experimental coevolution with micro organism and phage. Infect Genet Evol. 2007;7:547–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye M, Zhao Y, Wang Y, Zhao M, Yodsanit N, Xie R, Andes D, Gong S. A dual-responsive antibiotic-loaded nanoparticle particularly binds pathogens and overcomes antimicrobial-resistant infections. Adv Mater. 2021;33:e2006772.

    Article 
    PubMed 

    Google Scholar
     

  • Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dąbrowska Okay. Phage remedy: what components form phage pharmacokinetics and bioavailability? Systematic and significant assessment. Med Res Rev. 2019;39:2000–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin P, Sha R, Zhang Y, Liu L, Bian Y, Qian J, Qian J, Lin J, Ishimwe N, Hu Y, Zhang W, Liu Y, Yin S, Ren L, Wen LP. Blood circulation-prolonging peptides for engineered nanoparticles recognized through phage show. Nano Lett. 2019;19:1467–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin P, Wang L, Sha R, Liu L, Qian J, Ishimwe N, Zhang W, Qian J, Zhang Y, Wen L. A blood circulation-prolonging peptide anchored biomimetic phage-platelet hybrid nanoparticle system for extended blood circulation and optimized anti-bacterial efficiency. Theranostics. 2021;11:2278–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Music ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A brand new coronavirus related to human respiratory illness in China. Nature. 2020;579:265–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sokullu E, Gauthier M-S, Coulombe B. Discovery of antivirals utilizing phage show. Viruses. 2021. https://doi.org/10.3390/v13061120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham BS. Advances in antiviral vaccine growth. Immunol Rev. 2013;255:230–42.

    Article 
    PubMed 

    Google Scholar
     

  • Bakhshinejad B. Bacteriophages and their purposes within the analysis and remedy of hepatitis B virus an infection. World J Gastroenterol. 2014. https://doi.org/10.3748/wjg.v20.i33.11671.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sathaliyawala T, Rao M, Maclean DM, Birx DL, Alving CR, Rao VB. Meeting of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel In Vitro method to assemble multicomponent HIV vaccines. J Virol. 2006;80:7688–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahadir AO, Balcioglu BK, Uzyol KS, Hatipoglu I, Sogut I, Basalp A, Erdag B. Phage displayed HBV core antigen with immunogenic exercise. Appl Biochem Biotechnol. 2011;165:1437–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashemi H, Bamdad T, Jamali A, Pouyanfard S, Mohammadi MG. Analysis of humoral and mobile immune responses towards HSV-1 utilizing genetic immunization by filamentous phage particles: a comparative method to standard DNA vaccine. J Virol Strategies. 2010;163:440–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letvin NL. Progress towards an HIV vaccine. Annu Rev Med. 2005;56:213–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-based vaccines: a potent method for antigen supply. Vaccines. 2020;8:504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O’Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W, Pasqualini R. Design and proof of idea for focused phage-based COVID-19 vaccination methods with a streamlined cold-free provide chain. Proc Natl Acad Sci. 2021. https://doi.org/10.1073/pnas.2105739118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyriakidis NC, Lopez-Cortes A, Gonzalez EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines methods: a complete assessment of section 3 candidates. NPJ Vaccines. 2021;6:28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan A, Rao TS, Joshi HM. Phage remedy within the Covid-19 period: benefits over antibiotics. Curr Res Microbial Sci. 2022;3:100115.

    Article 
    CAS 

    Google Scholar
     

  • Ul Haq I, Krukiewicz Okay, Yahya G, Haq MU, Maryam S, Mosbah RA, Saber S, Alrouji M. The breadth of bacteriophages contributing to the event of the phage-based vaccines for COVID-19: a perfect platform to design the multiplex vaccine. Int J Mol Sci. 2023;24:1536.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chanishvili N. Phage remedy—historical past from twort and d’herelle by means of soviet expertise to present approaches. Bacteriophages Half B. 2012. https://doi.org/10.1016/B978-0-12-394438-2.00001-3.

    Article 

    Google Scholar
     

  • Bhargava Okay, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from guarantees to practices and prospectives. Appl Microbiol Biotechnol. 2021;105:9047–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabowski Ł, Węgrzyn G, Węgrzyn A, Podlacha M. Extremely totally different results of phage remedy and antibiotic remedy on immunological responses of chickens contaminated with Salmonella enterica serovar Typhimurium. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.956833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Q. Fang, X. Yin, Y. He, Y. Feng, L. Zhang, H. Luo, G. Yin, A. McNally, Z. Zong. Security and efficacy of phage utility in bacterial decolonisation: a scientific assessment. Lancet Microbe. 2024.

  • Banoub J, Gomes RA, Almeida C, Correia C, Guerreiro A, Simplício AL, Abreu IA, Alves PG. Exploring the analytical energy of the QTOF MS platform to evaluate monoclonal antibodies high quality attributes. Plos ONE. 2019;14:e0219156.

    Article 

    Google Scholar
     

  • Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage show derived monoclonal antibodies: from bench to bedside. Entrance Immunol. 2020;11:567223.

    Article 

    Google Scholar
     

  • Bobay L-M, Rocha EPC, Touchon M. The variation of temperate bacteriophages to their host genomes. Mol Biol Evol. 2013;30:737–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diacovich L, Gorvel J-P. Bacterial manipulation of innate immunity to advertise an infection. Nat Rev Microbiol. 2010;8:117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fage C, Lemire N, Moineau S. Supply of CRISPR-Cas techniques utilizing phage-based vectors. Curr Opin Biotechnol. 2021;68:174–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *