Shin, H., Hansen, Okay. U. & Jiao, F. Techno-economic evaluation of low-temperature carbon dioxide electrolysis. Nat. Maintain. 4, 911–919 (2021).
Davis, S. J. et al. Web-zero emissions power techniques. Science 360, eaas9793 (2018).
Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).
Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Maintain. 5, 563–573 (2022).
Wakerley, D. et al. Gasoline diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Power 7, 130–143 (2022).
Gabardo, C. M. et al. Steady carbon dioxide electroreduction to concentrated multi-carbon merchandise utilizing a membrane electrode meeting. Joule 3, 2777–2791 (2019).
Rabiee, H. et al. Gasoline diffusion electrodes (GDEs) for electrochemical discount of carbon dioxide, carbon monoxide, and dinitrogen to value-added merchandise: a overview. Power Environ. Sci. 14, 1959–2008 (2021).
Ge, L. et al. Electrochemical CO2 discount in membrane-electrode assemblies. Chem 8, 663–692 (2022).
de Sousa, L., Benes, N. E. & Mul, G. Evaluating the consequences of membranes, cell designs, and circulation configurations on the efficiency of Cu-GDEs in changing CO2 to CO. ACS EST Eng. 2, 2034–2042 (2022).
Endrődi, B. et al. Excessive carbonate ion conductance of a strong PiperION membrane permits industrial present density and conversion in a zero-gap carbon dioxide electrolyzer cell. Power Environ. Sci. 13, 4098–4105 (2020).
Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at excessive selectivity, stability and effectivity utilizing sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).
Li, J. et al. Constraining CO protection on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).
Wu, M. et al. Sequential *CO administration by way of controlling in situ reconstruction for environment friendly industrial-current-density CO2-to-C2+ electroreduction. Proc. Natl Acad. Sci. USA 120, e2302851120 (2023).
García de Arquer, F. P. et al. CO2 electrolysis to multicarbon merchandise at actions higher than 1 A cm−2. Science 367, 661–666 (2020).
Möller, T. et al. The product selectivity zones in fuel diffusion electrodes through the electrocatalytic discount of CO2. Power Environ. Sci. 14, 5995–6006 (2021).
Ma, M. et al. Insights into the carbon stability for CO2 electroreduction on Cu utilizing fuel diffusion electrode reactor designs. Power Environ. Sci. 13, 977–985 (2020).
Nwabara, U. O. et al. In the direction of accelerated sturdiness testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).
Popović, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 discount. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).
Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 discount by way of infiltration of hydrophobic particles in a fuel diffusion layer. ACS Power Lett. 7, 2884–2892 (2022).
Yang, Okay., Kas, R., Smith, W. A. & Burdyny, T. Function of the carbon-based fuel diffusion layer on flooding in a fuel diffusion electrode cell for electrochemical CO2 discount. ACS Power Lett. 6, 33–40 (2021).
Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on fuel diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).
Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped alternatives. ACS Catal. 12, 1037–1051 (2022).
Liu, M. et al. The capping agent is the important thing: structural alterations of Ag NPs throughout CO2 electrolysis probed in a zero-gap gas-flow configuration. J. Catal. 404, 371–382 (2021).
Garg, S. et al. How alkali cations have an effect on salt precipitation and CO2 electrolysis efficiency in membrane electrode meeting electrolyzers. Power Environ. Sci. 16, 1631–1643 (2023).
Xu, Q. et al. Figuring out and assuaging the sturdiness challenges in membrane-electrode-assembly gadgets for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).
Moss, A. et al. In operando investigations of oscillatory water and carbonate results in MEA-based CO2 electrolysis gadgets. Joule 7, 350–365 (2022).
Martens, I., Chattot, R. & Drnec, J. Decoupling catalyst aggregation, ripening, and coalescence processes inside working gas cells. J. Energy Sources 521, 230851 (2022).
Dorofeev, G. A., Streletskii, A. N., Povstugar, I. V., Protasov, A. V. & Elsukov, E. P. Dedication of nanoparticle sizes by X-ray diffraction. Colloid J. 74, 675–685 (2012).
Martens, I. et al. X-ray clear proton-exchange membrane gas cell design for in situ vast and small angle scattering tomography. J. Energy Sources 437, 226906 (2019).
Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, Okay. A. & Wark, M. Towards creating accelerated stress assessments for proton change membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020).
Li, D. et al. Sturdiness of anion change membrane water electrolyzers. Power Environ. Sci. 14, 3393–3419 (2021).
Xu, Y. et al. Self-cleaning CO2 discount techniques: unsteady electrochemical forcing allows stability. ACS Power Lett. 6, 809–815 (2021).
Disch, J., Bohn, L., Metzler, L. & Vierrath, S. Methods for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO. J. Mater. Chem. A 11, 7344–7357 (2023).
Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).
Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous analysis of liquid merchandise in high-rate CO2/CO electrolysis. ACS Power Lett. 7, 2595–2601 (2022).
Xu, Q. et al. Enriching surface-accessible CO2 within the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).
Zeradjanin, A. R., Narangoda, P., Spanos, I., Masa, J. & Schlögl, R. Tips on how to minimise destabilising impact of fuel bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021).
Graedel, T. E. Corrosion mechanisms for silver uncovered to the environment. J. Electrochem. Soc. 139, 1963 (1992).
Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic functions. Adv. Mater. 25, 2045–2050 (2013).
Lu, X. et al. In situ remark of the pH gradient close to the fuel diffusion electrode of CO2 discount in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).
Again, S., Yeom, M. S. & Jung, Y. Energetic websites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).
Clark, E. L. et al. Affect of atomic floor construction on the exercise of Ag for the electrochemical discount of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).
Chen, X. et al. Simultaneous SAXS/WAXS/UV–vis research of the nucleation and progress of nanoparticles: a take a look at of classical nucleation principle. Langmuir 31, 11678–11691 (2015).
Kuhl, Okay. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition steel surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).
Cofell, E. R. et al. Potential biking of silver cathodes in an alkaline CO2 circulation electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Power Mater. 5, 12013–12021 (2022).
Moss, A. et al. Versatile excessive power X-ray clear electrolysis cell for operando measurements. J. Energy Sources 562, 232754 (2022).
Ashiotis, G. et al. The quick azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).
Kieffer, J. & Karkoulis, D. PyFAI, a flexible library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).
Jinschek, J. R. & Helveg, S. Picture decision and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012).