Bozovic, O., Jankovic, B. & Hamm, P. Utilizing azobenzene photocontrol to set proteins in movement. Nat. Rev. Chem. 6, 112–124 (2022).
Emiliani, V. et al. Optogenetics for gentle management of organic programs. Nat. Rev. Strategies Primers 2, 55 (2022).
Kramer, R. H., Chambers, J. J. & Trauner, D. Photochemical instruments for distant management of ion channels in excitable cells. Nat. Chem. Biol. 1, 360–365 (2005).
Koçer, A., Walko, M., Meijberg, W. & Feringa, B. L. Chemistry: a light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).
Banghart, M., Borges, Okay., Isacoff, E., Trauner, D. & Kramer, R. H. Gentle-activated ion channels for distant management of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).
Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).
Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Distant management of ion channels and neurons by way of magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).
Catterall, W. A. Ion channel voltage sensors: construction, perform, and pathophysiology. Neuron 67, 915–928 (2010).
Hirschi, S., Ward, T. R., Meier, W. P., Muller, D. J. & Fotiadis, D. Artificial biology: bottom-up meeting of molecular programs. Chem. Rev. 122, 16294–16328 (2022).
Ankenbruck, N., Courtney, T., Naro, Y. & Deiters, A. Optochemical management of organic processes in cells and animals. Angew. Chem. Int. Ed. 57, 2768–2798 (2018).
SzymaŃski, W., Yilmaz, D., Koçer, A. & Feringa, B. L. Vibrant ion channels and lipid bilayers. Acc. Chem. Res. 46, 2910–2923 (2013).
Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: range, mechanisms, and optogenetic functions. Annu. Rev. Biochem. 86, 845–872 (2017).
Zhang, F. et al. The microbial opsin household of optogenetic instruments. Cell 147, 1446–1457 (2011).
Maltan, L., Najjar, H., Tiffner, A. & Derler, I. Deciphering molecular mechanisms and intervening in physiological and pathophysiological processes of Ca2+ signaling mechanisms utilizing optogenetic instruments. Cells 10, 3340 (2021).
Nguyen, N. T. et al. CRAC channel-based optogenetics. Cell Calcium 75, 79–88 (2018).
Jiang, S., Wu, X., Rommelfanger, N. J., Ou, Z. & Hong, G. Shedding gentle on neurons: optical approaches for neuromodulation. Natl Sci. Rev. 9, nwac007 (2022).
Xu, X., Mee, T. & Jia, X. New period of optogenetics: from the central to peripheral nervous system. Crit. Rev. Biochem. Mol. Biol. 55, 1–16 (2020).
Nyns, E. C. A. et al. An automatic hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci. Transl. Med. 11, 1–12 (2019).
Tochitsky, I. et al. How azobenzene photoswitches restore visible responses to the blind retina. Neuron 92, 100–113 (2016).
Volgraf, M. et al. Allosteric management of an ionotropic glutamate receptor with an optical change. Nat. Chem. Biol. 2, 47–52 (2006).
Lam, P. Y. et al. TRPswitch—a step-function chemo-optogenetic ligand for the vertebrate trpa1 channel. J. Am. Chem. Soc. 142, 17457–17468 (2020).
Fehrentz, T. et al. Optical management of L-type Ca2+ channels utilizing a diltiazem photoswitch. Nat. Chem. Biol. 14, 764–767 (2018).
Offenbartl‐Stiegert, D., Rottensteiner, A., Dorey, A. & Howorka, S. A light-weight‐triggered artificial nanopore for controlling molecular transport throughout organic membranes. Angew. Chem. Int. Ed. 61, e202210886 (2022).
Kerckhoffs, A., Bo, Z., Penty, S. E., Duarte, F. & Langton, M. J. Purple-shifted tetra-ortho-halo-azobenzenes for photo-regulated transmembrane anion transport. Org. Biomol. Chem. 19, 9058–9067 (2021).
Johnson, T. G., Sadeghi-Kelishadi, A. & Langton, M. J. A photograph-responsive transmembrane anion transporter relay. J. Am. Chem. Soc. 144, 10455–10461 (2022).
Mutter, N. L., Volarić, J., Szymanski, W., Feringa, B. L. & Maglia, G. Reversible photocontrolled nanopore meeting. J. Am. Chem. Soc. 141, 14356–14363 (2019).
Chang, C., Niblack, B., Walker, B. & Bayley, H. A photogenerated pore-forming protein. Chem. Biol. 2, 391–400 (1995).
Bléger, D., Schwarz, J., Brouwer, A. M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches providing almost quantitative two-way isomerization with seen gentle. J. Am. Chem. Soc. 134, 20597–20600 (2012).
Calbo, J. et al. Tuning azoheteroarene photoswitch efficiency by way of heteroaryl design. J. Am. Chem. Soc. 139, 1261–1274 (2017).
Weston, C. E., Richardson, R. D., Haycock, P. R., White, A. J. P. & Fuchter, M. J. Arylazopyrazoles: azoheteroarene photoswitches providing quantitative isomerization and lengthy thermal half-lives. J. Am. Chem. Soc. 136, 11878–11881 (2014).
Walker, B. & Bayley, H. Key residues for membrane binding, oligomerization, and pore forming exercise of staphylococcal α-hemolysin recognized by cysteine scanning mutagenesis and focused chemical modification. J. Biol. Chem. 270, 23065–23071 (1995).
Braha, O. et al. Designed protein pores as elements for biosensors. Chem. Biol. 4, 497–505 (1997).
Maglia, G. et al. Droplet networks with integrated protein diodes present collective properties. Nat. Nanotechnol. 4, 437–440 (2009).
Loudwig, S. & Bayley, H. Photoisomerization of a person azobenzene molecule in water: an on–off change triggered by gentle at a hard and fast wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).
Frank, J. A. et al. Photoswitchable fatty acids allow optical management of TRPV1. Nat. Commun. 6, 7118 (2015).
Schild, V. R. et al. Gentle-patterned present era in a droplet bilayer array. Sci. Rep. 7, 46585 (2017).
Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed materials. Science 340, 48–52 (2013).
Sales space, M. J., Restrepo Schild, V., Field, S. J. & Bayley, H. Gentle-patterning of artificial tissues with single droplet decision. Sci. Rep. 7, 9315 (2017).
Li, J. et al. Steel–natural frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017).