Da Silva Ruy, A. D., Ferreira, A. L. F., Bresciani, A. É., de Brito Alves, R. M. & Pontes, L. A. M. Market prospecting and evaluation of the financial potential of glycerol from biodiesel. In Biotechnological Purposes of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen Press, 2021).
Yan, Y. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen gas at excessive present densities. J. Am. Chem. Soc. 145, 6144–6155 (2023).
Schichtl, Z. G., Conlin, S. Okay., Mehrabi, H., Nielander, A. C. & Coridan, R. H. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Power Mater. 5, 3863–3875 (2022).
de Souza, M. B. C. et al. Bi-modified Pt electrodes towards glycerol electrooxidation in alkaline answer: results on exercise and selectivity. ACS Catal. 9, 5104–5110 (2019).
Houache, M. S. E. et al. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: perception into product selectivity utilizing in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Maintain. Chem. Eng. 7, 14425–14434 (2019).
Wang, Y., Xiao, Y. & Xiao, G. Sustainable value-added C3 chemical compounds from glycerol transformations: a mini evaluation for heterogeneous catalytic processes. Chinese language J. Chem. Eng. 27, 1536–1542 (2019).
Valter, M., dos Santos, E. C., Pettersson, L. G. M. & Hellman, A. Partial electrooxidation of glycerol on close-packed transition metallic surfaces: insights from first-principles calculations. J. Phys. Chem. C 124, 17907–17915 (2020).
Dodekatos, G., Schünemann, S. & Tüysüz, H. Current advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).
Dai, C. et al. Electrochemical manufacturing of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356, 14–21 (2017).
Huang, B. et al. Seeded synthesis of hole PdSn intermetallic nanomaterials for extremely environment friendly electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233 (2023).
Yu, X. et al. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution using an environment friendly MoOx/Pt Catalyst. Small 17, 2104288 (2021).
Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton course of utilizing a secure NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).
Wu, J. et al. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem. Int. Ed. 62, e202216083 (2023).
Ma, Y. et al. Response mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chem. Eng. Sci. 203, 228–236 (2019).
Holade, Y., Morais, C., Servat, Okay., Napporn, T. W. & Kokoh, Okay. B. Towards the electrochemical valorization of glycerol: Fourier remodel infrared spectroscopic and chromatographic research. ACS Catal. 3, 2403–2411 (2013).
Jeffery, D. Z. & Camara, G. A. The formation of carbon dioxide throughout glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem. Commun. 12, 1129–1132 (2010).
Terekhina, I. & Johnsson, M. Enhancing glycerol electrooxidation efficiency on nanocubic PtCo Catalysts. ACS Appl. Mater. Interfaces 16, 56987–56996 (2024).
Chen, W. et al. Excessive-entropy intermetallic PtRhBiSnSb nanoplates for extremely environment friendly alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).
Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for gas cells. Science 374, 459–464 (2021).
Cao, G. et al. Liquid metallic for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).
Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity aspects for oxygen discount in sensible gas cells. J. Am. Chem. Soc. 145, 11140–11150 (2023).
Xing, F., Ma, J., Shimizu, Okay. I. & Furukawa, S. Excessive-entropy intermetallics on ceria as environment friendly catalysts for the oxidative dehydrogenation of propane utilizing CO2. Nat. Commun. 13, 5065 (2022).
Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. Excessive-entropy alloys in electrocatalysis: from fundamentals to functions. Chem. Soc. Rev. 52, 8319–8373 (2023).
Li, H. et al. The self-complementary impact by means of sturdy orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B 312, 121431 (2022).
Liu, G. et al. Hydrogen-intercalation-induced lattice growth of Pd@Pt core–shell nanoparticles for extremely environment friendly electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).
Liu, L. et al. Construction and efficiency relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 292, 120164 (2021).
Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature gas cell catalysts. Chem. Rev. 104, 4613–4636 (2004).
Luo, H. et al. Position of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemical compounds coproduction by way of glycerol electrooxidation. ACS Catal. 12, 14492–14506 (2022).
Xing, Z., Li, J., Wang, S., Su, C. & Jin, H. Construction engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation response. Nano Res. 15, 3866–3871 (2022).
Jia, Q. et al. Improved oxygen discount exercise and sturdiness of dealloyed PtCox catalysts for proton trade membrane gas cells: pressure, ligand, and particle measurement results. ACS Catal. 5, 176–186 (2015).
Jia, Q. et al. Roles of Mo floor dopants in enhancing the ORR efficiency of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).
Liu, Y. et al. Selling n-butane dehydrogenation over PtMn/SiO2 by means of structural evolution induced by a reverse water-gas shift response. ACS Catal. 12, 13506–13512 (2022).
Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution response (OER) on Ru, Ir, and Pt catalysts: a comparative examine of nanoparticles and bulk supplies. ACS Catal. 2, 1765–1772 (2012).
Sheng, W. et al. Correlating hydrogen oxidation and evolution exercise on platinum at completely different pH with measured hydrogen binding vitality. Nat. Commun. 6, 5848 (2015).
Takimoto, D. et al. Platinum nanosheets synthesized by way of topotactic discount of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 14, 19 (2023).
Wu, J., Yang, X. & Gong, M. Current advances in glycerol valorization by way of electrooxidation: catalyst, mechanism and system. Chinese language J. Catal. 43, 2966–2986 (2022).
Simões, M., Baranton, S. & Coutanceau, C. Electro-oxidation of glycerol at Pd primarily based nano-catalysts for an software in alkaline gas cells for chemical compounds and vitality cogeneration. Appl. Catal. B 93, 354–362 (2010).
Zhang, W.-Y., Zou, S.-Z. & Cai, W.-B. Current advances in glycerol electrooxidation on Pt and Pd: from response mechanisms to catalytic supplies. J. Electrochem. 27, 233–256 (2021).
Vo, T.-G., Ho, P.-Y. & Chiang, C.-Y. Operando mechanistic research of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B 300, 120723 (2022).
Liu, C. et al. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst—CuO. Appl. Catal. B 265, 118543 (2020).
Kuhl, Okay. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metallic surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).
Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid gas on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).
Nørskov, J. Okay. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
Pang, X. et al. In situ electrochemical reconstitution of CF–CuO/CeO2 for environment friendly lively species technology. Inorg. Chem. 61, 8940–8954 (2022).
Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic options. Angew. Chem. Int. Ed. 60, 21464–21472 (2021).
Vo, T.-G. et al. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant manufacturing of value-added tartronic acid and hydrogen gas. Adv. Funct. Mater. 33, 2209386 (2023).
Chang, Z., Huo, S., Zhang, W., Fang, J. & Wang, H. The tunable and extremely selective discount merchandise on Ag@Cu bimetallic catalysts towards CO2 electrochemical discount response. J. Phys. Chem. C 121, 11368–11379 (2017).
Bu, L. et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for environment friendly oxygen discount electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017).