Arif I, Batool M, Schenk PM. Plant microbiome engineering: anticipated advantages for improved crop progress and resilience. Tendencies Biotechnol. 2020;38(12):1385–96.
Bhattacharyya PNJD. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol iotechnol. 2012;28(4):1327–50.
Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA. Impact of phosphate solubilization microorganisms (PSM) and plant progress selling rhizobacteria (PGPR) on yield and yield elements of corn (Zea mays L.). World Acad Sci Eng Technol. 2009;49(1):90–2.
Lucas Garcia J, Probanza A, Ramos B, Barriuso J, Gutierrez Manero F. Results of inoculation with plant progress selling rhizobacteria (PGPRs) and Sinorhizobium fredii on organic nitrogen fixation, nodulation and progress of Glycine max cv. Osumi. Plant Soil. 2004;267:143–53.
Ipek M, Aras S, Arıkan Ş, Eşitken A, Pırlak L, Dönmez MF, Turan M. Root plant progress selling rhizobacteria inoculations improve ferric chelate reductase (FC-R) exercise and Fe vitamin in pear below calcareous soil circumstances. Sci Hortic. 2017;219:144–51.
Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant progress selling exercise below salt stress. Plant Soil. 2013;366:93–105.
Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant progress selling rhizobacteria (PGPR): a overview. Cogent Meals Agric. 2016;2(1):1127500.
Della Mónica IFWVA, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological perception. Arch Microbiol. 2022;204(6):316.
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interaction between nano-enabled agrochemicals and the plant-associated microbiome. Tendencies Plant Sci. 2023;16:1310.
An C, Solar C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C. Nanomaterials and nanotechnology for the supply of agrochemicals: methods in direction of sustainable agriculture. J Nanobiotechnol. 2022;20(1):1–19.
Hussain M, Shakoor N, Adeel M, Ahmad MA, Zhou H, Zhang Z, Xu M, Rui Y, White JC. Nano-enabled plant microbiome engineering for illness resistance. Nano Immediately. 2023;48: 101752.
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials enhance maize yield below salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environ Pollut. 2022;299: 118900.
Ahmed T, Noman M, Jiang H, Shahid M, Ma C, Wu Z, Nazir MM, Ali MA, White JC, Chen J. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight illness by modulating plant protection response and dietary standing of rice (Oryza sativa L.). Nano Immediately. 2022;45:101547.
Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: helpful rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.
Rashid MI, Shah GA, Sadiq M, Amin Nu, Ali AM, Ondrasek G, Shahzad Ok. Nanobiochar and copper oxide nanoparticles combination synergistically will increase soil nutrient availability and improves wheat manufacturing. Crops. 2023;12(6):1312.
Afzal S, Singh NK. Impact of zinc and iron oxide nanoparticles on plant physiology, seed high quality and microbial group construction in a rice-soil-microbial ecosystem. Environ Pollut. 2022;314: 120224.
Zhao L, Chen S, Tan X, Yan X, Zhang W, Huang Y, Ji R, White JC. Environmental implications of MoS2 nanosheets on rice and related soil microbial communities. Chemosphere. 2022;291: 133004.
Khan ST. Interplay of engineered nanomaterials with soil microbiome and vegetation: their influence on plant and soil well being. Maintain Agric Rev. 2020;41:181–99.
Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: helpful rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.
Zhang W, Jia X, Chen S, Wang J, Ji R, Zhao L. Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) vegetation. Environ Pollut. 2020;267:115608.
Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally related helpful soil micro organism–a vital overview. Nanotoxicology. 2019;13(3):392–428.
Khanna Ok, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the influence of engineered nanoparticles on soil microbiome: a concentric strategy in direction of environmental dangers and cogitation. Ecotoxicol Environ Saf. 2021;222: 112459.
Rodrigues ES, Montanha GS, de Almeida E, Fantucci H, Santos RM, de Carvalho HW. Impact of nano cerium oxide on soybean (Glycine max L. Merrill) crop uncovered to environmentally related concentrations. Chemosphere. 2021;273:128492.
Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological results of cerium oxide nanoparticles on the photosynthesis and water use effectivity of soybean (Glycine max (L.) Merr). Environ Sci Nano. 2017;4(5):1086–94.
Zhao F, Xin X, Cao Y, Su D, Ji P, Zhu Z, He Z. Use of carbon nanoparticles to enhance soil fertility, crop progress and nutrient uptake by corn (Zea mays L.). Nanomaterials. 2021;11(10):2717.
Wang H, Zhang M, Track Y, Li H, Huang H, Shao M, Liu Y, Kang Z. Carbon dots promote the expansion and photosynthesis of mung bean sprouts. Carbon. 2018;136:94–102.
Rahmani N, Radjabian T, Soltani BM. Impacts of foliar publicity to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem. 2020;150:27–38.
Chung H, Kim MJ, Ko Ok, Kim JH, Kwon H-a, Hong I, Park N, Lee S-W, Kim W. Results of graphene oxides on soil enzyme exercise and microbial biomass. Sci Complete Environ. 2015;514:307–13.
Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N. Modification of agricultural soil with steel nanoparticles: results on soil enzyme exercise and microbial group composition. Environ Sci Technol. 2018;52(4):1908–18.
Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: intestine microbiota/microbiome-mediated results of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–5.
Ge Y, Schimel JP, Holden PA. Identification of soil micro organism inclined to TiO2 and ZnO nanoparticles. Appl Environ Microbiol. 2012;78(18):6749–58.
Chen LYJ, Li X, Liang T, Nie C, Xie F, Liu Ok, Peng X, Xie J. Carbon nanoparticles improve potassium uptake by way of upregulating potassium channel expression and imitating organic ion channels in BY-2 cells. J Nanobiotechnology. 2020;18:21.
Yang JLT, Li HJ, Yin QS, Zhang YL, Zhou HP, Zhang SX. Results of nano-carbon sol on physiological traits of root system and potassium absorption of flue-cured tobacco. Yancao Keji. 2015;48(1):7–11.
Wang C, Hua Y, Liang T, Guo Y, Wang L, Zheng X, Liu P, Zheng Q, Kang Z, Xu Y. Built-in analyses of ionomics, phytohormone profiles, transcriptomics, and metabolomics reveal a pivotal function of carbon-nano sol in selling the expansion of tobacco vegetation. BMC Plant Biol. 2024;24(1):473.
Li D, Li T, Yang X, Wang H, Chu J, Dong H, Lu P, Tao J, Cao P, Jin J. Carbon nanosol promotes plant progress and broad-spectrum resistance. Environ Res. 2024;251: 118635.
Cheng L, Tao J, Qu Z, Lu P, Liang T, Meng L, Zhang W, Liu N, Zhang J, Cao P. Carbon nanosol-induced assemblage of a plant-beneficial microbiome consortium. J Nanobiotechnol. 2023;21(1):436.
Chen LWH, Li X, Nie C, Liang T, Xie F. Extremely hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv. 2018;8:35246–56.
Cui A-L, Feng G-X, Zhao Y-F, Kou H-Z, Li H, Zhu G-H, Hwang H-S, Oh H-C, Kwon Y-J, Lee D-C. Synthesis and separation of mellitic acid and graphite oxide colloid by way of electrochemical oxidation of graphite in deionized water. Electrochem commun. 2009;11(2):409–12.
Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH. Host choice shapes crop microbiome meeting and community complexity. New Phytol. 2021;229(2):1091–104.
Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. Excessive-throughput fluorometric measurement of potential soil extracellular enzyme actions. J Vis Exp. 2013;81: e50961.
Quast CPE, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database challenge: improved information processing and web-based instruments. Nucleic Acids Res. 2013;41(Database concern):D590-596.
Nilsson RHLK, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard Ok, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov Ok. The UNITE database for molecular identification of fungi: dealing with darkish taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;8(D1):D259–64.
Nurk SMD, Korobeynikov A, Pevzner PA. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 2017;5:824–34.
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook dinner H, Mende DR, Letunic I, Rattei T, Jensen LJ. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource based mostly on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1):D309–14.
Buchfink B, Reuter Ok, Drost H-G. Delicate protein alignments at tree-of-life scale utilizing DIAMOND. Nat Strategies. 2021;18(4):366–8.
Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological community analyses. BMC Bioinf. 2012;13:1–20.
Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological community analyses. BMC Bioinform. 2012;13:1–20.
Bastian MHS, Jacomy M. Gephi: an open supply software program for exploring and manipulating networks. In: Third worldwide AAAI convention on weblogs and social media. 2009.
Zhang J, Liu Y-X, Guo X, Qin Y, Garrido-Oter R, Schulze-Lefert P, Bai Y. Excessive-throughput cultivation and identification of micro organism from the plant root microbiota. Nat Protoc. 2021;16(2):988–1012.
Kumar SSG, Li M, Knyaz C, Tamura Ok. MEGA X: molecular evolutionary genetics evaluation throughout computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD. SPAdes: a brand new genome meeting algorithm and its functions to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Love MIHW, Anders S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 2014;15(12):550.
Zhao Z, Dai H, Wang G, Peng Y, Liao F, Wu J, Liang T. Carbon nanoparticles promoted the absorption of potassium ions by tobacco roots by way of regulation of Ok+ flux and ion channel gene expression. Curr Nanosci. 2024;20(3):390–8.
Lijuan C, Huibo H, Zuguo S, Jianli Y, Chang G, Lu D, Dongfei L. Results of foliar utility of carbon nanosol on progress of potted tobacco seedlings. J Henan Agric Sci. 2024;53(8):44.
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant progress and growth: a perspective evaluation. Sci Complete Environ. 2018;630:1413–35.
Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Chicken N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. Publicity of engineered nanomaterials to vegetation: Insights into the physiological and biochemical responses-a overview. Plant Physiol Biochem. 2017;110:236–64.
Feng Y, Wang C, Chen F, Cao X, Wang J, Yue L, Wang Z. Cerium oxide nanomaterials improved cucumber flowering, fruit yield and high quality: the rhizosphere impact. Environ Sci Nano. 2023. https://doi.org/10.1039/D3EN00213F.
Jordan JT, Oates R, Subbiah S, Payton PR, Singh KP, Shah SA, Inexperienced MJ, Klein DM, Cañas-Carrell JE. Carbon nanotubes have an effect on early progress, flowering time and phytohormones in tomato. Chemosphere. 2020;256: 127042.
Juárez-Maldonado AGT, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: the magnitude of the influence of nanomaterials in microorganisms and vegetation. J Adv Res. 2021;31:113–26.
Von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in micro organism and aquatic microalgae–cutting-edge and information gaps. Nanotoxicology. 2014;8(6):605–30.
Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Castiglione MR. Exploring the interplay between polystyrene nanoplastics and Allium cepa throughout germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Biochem. 2020;149:170–7.
Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N. Impact of nanoparticles on crops and soil microbial communities. J Soils Sediments. 2018;18:2179–87.
Jangid Ok, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use historical past has a stronger influence on soil microbial group composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43(10):2184–93.
Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled enhancements of progress and dietary high quality in meals vegetation pushed by rhizosphere processes. Environ Int. 2020;142: 105831.
Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM. Taxonomical and useful microbial group choice in soybean rhizosphere. ISME J. 2014;8(8):1577–87.
Panke-Buisse Ok, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. Choice on soil microbiomes reveals reproducible impacts on plant operate. ISME J. 2015;9(4):980–9.
Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen within the rhizosphere and plant progress promotion by microorganisms. In.: Springer; 2009.
Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D. Genome survey and characterization of endophytic micro organism exhibiting a helpful impact on progress and growth of poplar bushes. Appl Environ Microbiol. 2009;75(3):748–57.
De Roy Ok, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Artificial microbial ecosystems: an thrilling instrument to know and apply microbial communities. Environ Microbiol. 2014;16(6):1472–81.
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interaction between nano-enabled agrochemicals and the plant-associated microbiome. Tendencies Plant Sci. 2023. https://doi.org/10.1016/j.tplants.2023.06.001.
Finkel OM, Salas-González I, Castrillo G, Conway JM, Legislation TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. A single bacterial genus maintains root progress in a fancy microbiome. Nature. 2020;587(7832):103–8.
Moisan Ok, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D. Volatiles of pathogenic and non-pathogenic soil-borne fungi have an effect on plant growth and resistance to bugs. Oecologia. 2019;190(3):589–604.
Lee S, Behringer G, Hung R, Bennett J. Results of fungal unstable natural compounds on Arabidopsis thaliana progress and gene expression. Fungal Ecol. 2019;37:1–9.
Jain S, Varma A, Tuteja N, Choudhary DK. Bacterial volatiles in promotion of plant below biotic stress. Volatiles Meals Sec. 2017;2017:299–311.
Lee S, Yap M, Behringer G, Hung R, Bennett JW. Unstable natural compounds emitted by Trichoderma species mediate plant progress. Fungal Biol Biotechnol. 2016;3(1):1–14.