Investigating the impact of heterogeneities throughout the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries

Investigating the impact of heterogeneities throughout the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries


  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).

    Article 

    Google Scholar
     

  • Wan, J. et al. Ultrathin, versatile, strong polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury, S. Strong-state polymer electrolytes for high-performance lithium steel batteries. Nat. Commun. 10, 4398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Growing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, T. et al. A multifunctional polymer electrolyte permits ultra-long cycle-life in a high-voltage lithium steel battery. Power Environ. Sci. 11, 1197–1203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Q., Liu, X., Stalin, S., Khan, Ok. & Archer, L. A. Strong-state polymer electrolytes with in-built quick interfacial transport for secondary lithium batteries. Nat. Power 4, 365–373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hatzell, Ok. B. et al. Challenges in lithium steel anodes for solid-state batteries. ACS Power Lett. 5, 922–934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Towards high-energy-density lithium steel batteries: alternatives and challenges for strong natural electrolytes. Adv. Mater. 32, 1905219 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured strong electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, G. et al. Commerce-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Power 5, e287 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Excessive toughness, excessive conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, B. Ok., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in prolonged amphiphilic dendrons. Science 305, 1598–1601 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grundy, L. S. et al. Inaccessible polarization-induced section transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting present. Macromolecules 55, 7637–7649 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Galluzzo, M. D., Bathroom, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic construction and section habits of a block copolymer electrolyte beneath dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer options. Macromolecules 43, 3750–3756 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gomez, E. D. et al. Impact of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, Ok. I. Community construction and powerful microphase separation for top ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Koerver, R. et al. Chemo-mechanical enlargement of lithium electrode supplies—on the path to mechanically optimized all-solid-state batteries. Power Environ. Sci. 11, 2142–2158 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Power Lett. 4, 591–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries utilizing operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Power Lett. 4, 1475–1483 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Traits Chem. 1, 845–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sharon, D. et al. Molecular stage variations in ionic solvation and transport habits in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chintapalli, M. et al. Construction and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes within the excessive salt focus restrict. Macromolecules 49, 1770–1780 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shen, Ok. H. & Corridor, L. M. Ion conductivity and correlations in mannequin salt-doped polymers: results of interplay energy and focus. Macromolecules 53, 3655–3668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic towards Sand’s time in strong polymer electrolytes. Mater. Right now Power 27, 101037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Focus polarization and steel dendrite initiation in remoted electrolyte microchannels. Power Environ. Sci. 13, 3504–3513 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium progress by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devaux, D. et al. Failure mode of lithium steel batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kaboli, S. et al. Habits of strong electrolyte in Li-polymer battery with NMC cathode through in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harry, Ok. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface buildings beneath dendrites fashioned on cycled lithium steel electrodes. Nat. Mater. 13, 69–73 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslyn, J. A. et al. Development of lithium dendrites and globules by a strong block copolymer electrolyte as a perform of present density. J. Phys. Chem. C 122, 26797–26804 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Harry, Ok. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping habits of lithium steel throughout a inflexible block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, E. Ok. W. et al. Early-stage decomposition of strong polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Multi-scale characterization strategies for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bostwick, J. E. et al. Ionic interactions management the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, D. et al. Room temperature to 150 °C lithium steel batteries enabled by a inflexible molecular ionic composite electrolyte. Adv. Power Mater. 11, 2003559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fox, R. J. et al. Nanofibrillar ionic polymer composites allow high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Extremely conductive and thermally secure ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Strong-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. Double helical conformation and excessive rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular construction and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Revolutionary electrolytes based mostly on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes utilizing extremely concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast strong electrolyte membranes based mostly on a charged rigid-rod polymer and ionic liquids. ACS Appl. Power Mater. 4, 6599–6605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Q. et al. Insights into the twin function of lithium difluoro(oxalato)borate additive in enhancing the electrochemical efficiency of NMC811||graphite cells. ACS Appl. Power Mater. 3, 695–704 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H., Maglia, F., Lamp, P., Amine, Ok. & Chen, Z. Mechanistic research of electrolyte components to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing impact of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Direct statement of the redistribution of sulfur and polysulfides in Li-S batteries throughout first cycle by in situ X-ray fluorescence microscopy. Adv. Power Mater. 5, 1500072 (2015).

    Article 

    Google Scholar
     

  • Freiberg, A. T. S. et al. Species in lithium-sulfur batteries utilizing spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, B. et al. On the polymer electrolyte interfaces: the function of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vairavamurthy, A. Utilizing X-ray absorption to probe sulfur oxidation states in complicated molecules. Spectrochim. Acta A 54, 2009–2017 (1998).

    Article 

    Google Scholar
     

  • Lin, Z. et al. Excessive-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Power 9, 408–416 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur Ok-edge X-ray absorption spectroscopy for figuring out the chemical speciation of sulfur in organic programs. FEBS Lett. 441, 11–14 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey, A. et al. Sulfur Ok-edge XAS and DFT calculations on nitrile hydratase: geometric and digital construction of the non-heme iron energetic web site. J. Am. Chem. Soc. 128, 533–541 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Internal shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Jalilehvand, F. Sulfur: not a “silent” ingredient any extra. Chem. Soc. Rev. 35, 1256–1268 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *