Intranasal supply of engineered extracellular vesicles promotes neurofunctional restoration in traumatic mind damage | Journal of Nanobiotechnology

Intranasal supply of engineered extracellular vesicles promotes neurofunctional restoration in traumatic mind damage | Journal of Nanobiotechnology


  • Mollayeva T, Mollayeva S, Colantonio A. Traumatic mind damage: intercourse, gender and intersecting vulnerabilities. Nat Rev Neurol. 2018;14:711–22.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH, Qiu BH, Huang XJ. Traumatic mind damage in China. Lancet Neurol. 2019;18:286–95.

    Article 
    PubMed 

    Google Scholar
     

  • Rauen Ok, Reichelt L, Probst P, Schäpers B, Müller F, Jahn Ok, et al. High quality of life as much as 10 years after traumatic mind damage: a cross-sectional evaluation. Well being Qual Life Outcomes. 2020;18(1):166.

    Article 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and irritation in ischemic stroke and traumatic mind Harm. ACS Nano. 2024;18:16450–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Lengthy T, Chen J, Wei H, Meng J, Kang M, et al. WTAP participates in neuronal harm by protein translation of NLRP3 in an m6A-YTHDF1-dependent method after traumatic mind damage. Int J Surg. 2024;110(9):5396–408.

  • Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, et al. Biomaterials in traumatic mind damage: views and challenges. Biology (Basel). 2023;13(1):21.

  • Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their supply, efficiency and use in regenerative therapies with concentrate on adipose-derived stem cells – a overview. Biotechnol Adv. 2018;36:1111–26.

  • Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An replace on adipose-derived stem cells for Regenerative Drugs: the place Problem meets alternative. Adv Sci (Weinh). 2023;10:e2207334.

    Article 
    PubMed 

    Google Scholar
     

  • Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, et al. Enrichment of autologous fats grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20.

    Article 
    PubMed 

    Google Scholar
     

  • Moon KC, Suh HS, Kim KB, Han SK, Younger KW, Lee JW, Kim MH. Potential of allogeneic adipose-derived stem cell-hydrogel advanced for treating Diabetic Foot Ulcers. Diabetes. 2019;68:837–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thesleff T, Lehtimaki Ok, Niskakangas T, Huovinen S, Mannerstrom B, Miettinen S, Seppanen-Kaijansinkko R, Ohman J. Cranioplasty with adipose-derived stem cells, Beta-tricalcium phosphate granules and supporting mesh: six-year medical Comply with-Up outcomes. Stem Cells Transl Med. 2017;6:1576–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarveazad A, Newstead GL, Mirzaei R, Joghataei MT, Bakhtiari M, Babahajian A, Mahjoubi B. A brand new technique for treating fecal incontinence by implanting stem cells derived from human adipose tissue: preliminary findings of a randomized double-blind medical trial. Stem Cell Res Ther. 2017;8:40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qayyum AA, Mathiasen AB, Helqvist S, Jorgensen E, Haack-Sorensen M, Ekblond A, Kastrup J. Autologous adipose-derived stromal cell therapy for sufferers with refractory angina (MyStromalCell Trial): 3-years follow-up outcomes. J Transl Med. 2019;17:360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtine G, Sofroniew MV. Spinal wire restore: advances in biology and know-how. Nat Med. 2019;25:898–908.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune N, Scholtemeijer M, Shah Ok. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Developments Pharmacol Sci. 2020;41:653–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giro O, Jimenez A, Pane A, Badimon L, Ortega E, Chiva-Blanch G. Extracellular vesicles in atherothrombosis and heart problems: pals and foes. Atherosclerosis. 2021;330:61–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong P, Yang H, Wu Y, Li Ok, Tang Z. The capabilities and medical software potential of exosomes derived from adipose mesenchymal stem cells: a complete overview. Stem Cell Res Ther. 2019;10:242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Li J, Ma B, Li N, Wang S, Solar Z, Xue C, Han Q, Wei J, Zhao RC. MSC-derived exosomes promote restoration from traumatic mind damage through microglia/macrophages in rat. Getting older. 2020;12:18274–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aimaletdinov AM, Gomzikova MO. Monitoring of extracellular vesicles’ biodistribution: new strategies and approaches. Int J Mol Sci. 2022;23(19):11312.

  • Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018;20:1419–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu H, Jia Z, Ma Ok, Zhang J, Dai C, Yao Z, Deng W, Su J, Wang R, Chen X. Protecting impact of BMSCs-derived exosomes mediated by BDNF on TBI through miR-216a-5p. Med Sci Monit. 2020;26:e920855.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, Liu S, Zang J, Ye J, Xiao M, et al. Exosome-mediated focused supply of miR-210 for angiogenic remedy after cerebral ischemia in mice. J Nanobiotechnol. 2019;17:29.

    Article 

    Google Scholar
     

  • Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Floor functionalized exosomes as focused drug supply autos for cerebral ischemia remedy. Biomaterials. 2018;150:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P, Yin R, Chen Y, Chang J, Yang L, Liu X, Xu H, Zhang X, Wang S, Han Q, Wei J. Engineered extracellular vesicles for ischemic stroke: a scientific overview and meta-analysis of preclinical research. J Nanobiotechnol. 2023;21:396.

    Article 
    CAS 

    Google Scholar
     

  • Shahjin F, Chand S, Yelamanchili SV. Extracellular vesicles as Drug Supply autos to the Central Nervous System. J Neuroimmune Pharmacol. 2020;15:443–58.

    Article 
    PubMed 

    Google Scholar
     

  • Lochhead JJ, Thorne RG. Intranasal supply of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aly AE, Waszczak BL. Intranasal gene supply for treating Parkinson’s illness: overcoming the blood-brain barrier. Professional Opin Drug Deliv. 2015;12:1923–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R. In vivo neuroimaging of Exosomes utilizing gold nanoparticles. ACS Nano. 2017;11:10883–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal supply of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs full spinal wire Harm. ACS Nano. 2019;13:10015–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perets N, Betzer O, Shapira R, Brenstein S, Angel A, Sadan T, Ashery U, Popovtzer R, Offen D. Golden exosomes selectively goal mind pathologies in neurodegenerative and neurodevelopmental problems. Nano Lett. 2019;19:3422–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YQ, Yue YX, Cao HM, Geng WC, Wang LX, Hu XY, Li HB, Bian Q, Kong XL, Liu JF, et al. Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for focused kidney damage imaging and remedy. J Nanobiotechnol. 2021;19:451.

    Article 
    CAS 

    Google Scholar
     

  • Keller LA, Merkel O, Popp A. Intranasal drug supply: alternatives and toxicologic challenges throughout drug improvement. Drug Deliv Transl Res. 2022;12:735–57.

    Article 
    PubMed 

    Google Scholar
     

  • Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interaction in cerebrovascular and neurodegenerative problems: molecular mechanisms and attainable therapeutic approaches. Redox Biol. 2019;21:101059.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Zhao G, Luo Z, Yu Z, Liu G, Su G, Tang X, Yuan Z, Huang C, Solar HS, et al. AD16 attenuates neuroinflammation induced by cerebral ischemia via down-regulating astrocytes A1 polarization. Biomed Pharmacother. 2024;178:117209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers concentrating on NF-kappaB and NLRP3 cut back neuroinflammation and enhance cognitive perform with growing old and tauopathy. J Neuroinflammation. 2024;21:182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri Ok, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug supply automobile for neurodegenerative illnesses. J Nanobiotechnol. 2024;22:463.

    Article 

    Google Scholar
     

  • Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic mind damage. Nat Rev Neurol. 2017;13:171–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong W, Li T, Hou S, Zhang H, Li Z, Wang G, Liu Q, Tune X. Unsupervised disentanglement technique for mitigating artifact in photoacoustic tomography beneath extraordinarily sparse view. Photoacoustics. 2024;38:100613.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic mind Harm. Entrance Getting older Neurosci. 2017;9:208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang JJ. Modulating neuroinflammation and cognitive perform in postoperative cognitive dysfunction through CCR5-GPCRs-Ras-MAPK pathway concentrating on with microglial EVs. CNS Neurosci Ther. 2024;30:e14924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chae S, Lee HJ, Lee HE, Kim J, Jeong YJ, Lin Y, Kim HY, Leriche G, Ehrlich RS, Lingl SC, et al. The dopamine analogue CA140 alleviates AD pathology, neuroinflammation, and rescues synaptic/cognitive capabilities by modulating DRD1 signaling or instantly binding to Abeta. J Neuroinflammation. 2024;21:200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Irritation is detrimental for neurogenesis in grownup mind. Proc Natl Acad Sci U S A. 2003;100:13632–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monje ML, Toda H, Palmer TD. Inflammatory blockade restores grownup hippocampal neurogenesis. Science. 2003;302:1760–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16:748–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilt AJ. Evolving Roles of Well being Care Organizations in Neighborhood Growth. AMA J Ethics. 2019;21:E201–206.

    Article 
    PubMed 

    Google Scholar
     

  • Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: fascinating target-tracking traits for cerebrovascular and neurodegenerative illness therapies. Theranostics. 2021;11:8926–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wang M, Jiang N, Ding S, Peng Q, Zheng L. Rising chemical engineering of exosomes as bioscaffolds in diagnostics and therapeutics. Genes Dis. 2023;10:1494–512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parhizkar A, Asgary S. Native Drug Supply Methods for Important Pulp Remedy: A New Hope. Int J Biomater 2021, 2021:5584268.

  • Bezzini DR, Washington GN, Abiodun O, Olufajo OA, Jones I, Butts DM, Ortega G, Paul H. The potential influence of cosmetic surgery experience on Physique Contouring Process outcomes. Aesthet Surg J. 2021;41:47–55.

    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Yin T, Zhang M, Li Z, Xu B, Lv H, Wang P, Wang J, Hao J, Zhang L. Operate of mir-21-5p derived from ADSCs-exos on the neuroinflammation after cerebral ischemia. J Stroke Cerebrovasc Dis. 2024;33:107779.

    Article 
    PubMed 

    Google Scholar
     

  • He L, Zhang H, Zhao N, Liao L. A novel strategy in biomedical engineering: using polyvinyl alcohol hydrogel encapsulating human umbilical wire mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int J Biol Macromol. 2024;270:132116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Z, Li J, Xiong H, Cui H, Ning J, Wang S, Ouyang X, Qian Y, Fan C. MicroRNA engineered umbilical wire stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnol. 2021;19:169.

    Article 
    CAS 

    Google Scholar
     

  • Du ZH, Chu WX, Peng X, Wu LL, Liu Y, Yu GY, et al. SHED-Derived exosomes ameliorate sjögren’s syndrome-induced hyposalivation by suppressing th1 cell response through the miR-29a-3p/T-bet axis. ACS Appl Mater Interfaces. 2025;17(4):5752–61.

    Article 

    Google Scholar
     

  • Zhou X, Ye C, Jiang L, Zhu X, Zhou F, Xia M, Chen Y. The bone mesenchymal stem cell-derived exosomal miR-146a-5p promotes diabetic wound therapeutic in mice through macrophage M1/M2 polarization. Mol Cell Endocrinol. 2024;579:112089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Xue J, Xu B, Zhang A, Qin L, Liu J, et al. Exosomes derived from miR-146a-5p-Enriched mesenchymal stem cells defend the cardiomyocytes and myocardial tissues within the polymicrobial sepsis via regulating MYBL1. Stem Cells Int. 2021;1530445.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Developments Biochem Sci. 2004;29:72–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative illnesses. Mol Neurobiol. 2016;53:1181–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poonasri M, Mankhong S, Chiranthanut N, Srisook Ok. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF-kappaB, MAPK, and Akt/GSK-3beta pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. Biomed Pharmacother. 2023;168:115808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Zhu Y, Gao D, Li M, Lin L, Wang Z, Du H, Xu Y, Liu J, He Y, et al. Matrilin-3 helps neuroprotection in ischemic stroke by suppressing astrocyte-mediated neuroinflammation. Cell Rep. 2024;43:113980.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug supply on to the mind. Life Sci. 2018;195:44–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ball MJ, Lukiw WJ, Kammerman EM, Hill JM. Intracerebral propagation of Alzheimer’s illness: strengthening proof of a herpes simplex virus etiology. Alzheimers Dement. 2013;9:169–75.

    Article 
    PubMed 

    Google Scholar
     

  • Steinke A, Meier-Stiegen S, Drenckhahn D, Asan E. Molecular composition of tight and adherens junctions within the rat olfactory epithelium and fila. Histochem Cell Biol. 2008;130:339–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Hu Ok, Jiang X. From nostril to mind: understanding transport capability and transport charge of medication. Professional Opin Drug Deliv. 2008;5:1159–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sood S, Jain Ok, Gowthamarajan Ok. Intranasal therapeutic methods for administration of Alzheimer’s illness. J Drug Goal. 2014;22:279–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta D, Jana M, Paidi RK, Majumder M, Raha S, Dasarathy S, et al. Tau fibrils induce glial irritation and neuropathology through TLR2 in Alzheimer’s disease-related mouse fashions. J Clin Make investments. 2023;133(18):e161987.

  • Zhong XL, Huang Y, Du Y, He LZ, Chen YW, Cheng Y, Liu H. Unlocking the therapeutic potential of Exosomes Derived from nasal olfactory mucosal mesenchymal stem cells: restoring synaptic plasticity, neurogenesis, and Neuroinflammation in Schizophrenia. Schizophr Bull. 2024;50:600–14.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Mao Y, Rong S, Liu G, Cao Y, Yang Z, Yu H, Zhang X, Fang H, Cai Z, et al. Engineering magnetic extracellular vesicles mimetics for enhanced concentrating on chemodynamic remedy to beat Ovary Most cancers. ACS Appl Mater Interfaces. 2024;16:39021–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Chen X, Qiu W, Zhao R, Duan J, Zhang S, Pan Z, Zhao S, Guo Q, Qi Y, et al. Synchronous disintegration of Ferroptosis Protection Axis through Engineered Exosome-Conjugated magnetic nanoparticles for Glioblastoma Remedy. Adv Sci (Weinh). 2022;9:e2105451.

    Article 
    PubMed 

    Google Scholar
     

  • Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam Ok, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical damage in a human mind organoid mannequin of traumatic mind damage. Cell Stem Cell. 2024;31:519–e536518.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Solar Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and enhance postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You T, Tang H, Wu W, Gao J, Li X, Li N, Xu X, Xing J, Ge H, Xiao Y, et al. POSTN Secretion by Extracellular Matrix Most cancers-Related fibroblasts (eCAFs) correlates with poor ICB response through Macrophage Chemotaxis activation of akt signaling pathway in gastric Most cancers. Getting older Dis. 2023;14:2177–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical damage: I. Methodology and native results of contusions within the rat. Mind Res. 1981;211:67–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda T, Kawabori M, Zheng Y, Yamaguchi S, Gotoh S, Nakahara Y, et al. Intranasal administration of mesenchymal stem cell-derived exosome alleviates hypoxic-ischemic mind damage. Pharmaceutics. 2024;16(4):446.

  • Wang Z, Wang Y, Wang Z, Gutkind JS, Wang Z, Wang F, Lu J, Niu G, Teng G, Chen X. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and development components to deal with traumatic mind damage. Stem Cells. 2015;33:456–67.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Keen AE, Sanchez-Ramos J, Chopp M. Intravenous administration of human umbilical wire blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, et al. Extracellular vesicle-mediated supply of round RNA SCMH1 promotes useful restoration in Rodent and Nonhuman Primate Ischemic Stroke fashions. Circulation. 2020;142:556–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *