Intermediate-range solvent templating and counterion behaviour at charged carbon nanotube surfaces

Intermediate-range solvent templating and counterion behaviour at charged carbon nanotube surfaces


  • Davis, V. A. et al. Section conduct and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Timasheff, S. N. & Inoue, H. Preferential binding of solvent elements to proteins in combined water–natural solvent techniques. Biochemistry 7, 2501–2513 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finney, J. & Soper, A. Solvent construction and perturbations in options of chemical and organic significance. Chem. Soc. Rev. 23, 1–10 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Nemoto, N., Schrag, J. L., Ferry, J. D. & Fulton, R. W. Infinite‐dilution viscoelastic properties of tobacco mosaic virus. Biopolymers 14, 409–417 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clancy, A. J. et al. Reductive dissolution of supergrowth carbon nanotubes for more durable nanocomposites by reactive coagulation spinning. Nanoscale 9, 8764–8773 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, V. A. et al. True options of single-walled carbon nanotubes for meeting into macroscopic supplies. Nat. Nanotechnol. 4, 830–834 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clancy, A. J. et al. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichmann, S. L., Anekal, S. G. & Bevan, M. A. Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24, 714–721 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batista, C. A. S., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Fumagalli, L. et al. Anomalously low dielectric fixed of confined water. Science 360, 1339–1342 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullen, P. L. et al. Ionic options of two-dimensional supplies. Nat. Chem. 9, 244–249 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chmiola, J. et al. Anomalous improve in carbon capacitance at pore sizes lower than 1 nanometer. Science 313, 1760–1763 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prehal, C. et al. Monitoring the structural association of ions in carbon supercapacitor nanopores utilizing in situ small-angle X-ray scattering. Vitality Environ. Sci. 8, 1725–1735 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Vitality 2, 1–8 (2017).

    Article 

    Google Scholar
     

  • Deschamps, M. et al. Exploring electrolyte group in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forse, A. C., Merlet, C. I., Griffin, J. M. & Gray, C. P. New views on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kralchevsky, P. A., Danov, Ok. D. & Basheva, E. S. Hydration drive because of the diminished screening of the electrostatic repulsion in few-nanometer-thick movies. Curr. Opin. Colloid Interf. Sci. 16, 517–524 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gavryushov, S. & Zielenkiewicz, P. Electrostatic potential of B-DNA: impact of interionic correlations. Biophys. J. 75, 2732–2742 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavryushov, S. Dielectric saturation of the ion hydration shell and interplay between two double helices of DNA in mono-and multivalent electrolyte options: foundations of the ε-modified Poisson–Boltzmann concept. J. Phys. Chem. B 111, 5264–5276 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zobel, M., Neder, R. B. & Kimber, S. A. Common solvent restructuring induced by colloidal nanoparticles. Science 347, 292–294 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomä, S. L. & Zobel, M. Ethanol–water motifs—a re-interpretation of the double-difference pair distribution capabilities of aqueous iron oxide nanoparticle dispersions. J. Chem. Phys. 158, 224704 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Soper, A. Joint construction refinement of X-ray and neutron diffraction knowledge on disordered supplies: utility to liquid water. J. Phys. Cond. Matt. 19, 335206 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Soper, A. Empirical potential Monte Carlo simulation of fluid construction. Chem. Phys. 202, 295–306 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Bowron, D. et al. NIMROD: the close to and intermediate vary order diffractometer of the ISIS second goal station. Rev. Sci. Instrum. 81, 033905 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, C. A., Thompson, H., Wasse, J. C. & Skipper, N. T. Formation of big solvation shells round fulleride anions in liquid ammonia. J. Am. Chem. Soc. 126, 13228–13229 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basma, N. et al. The liquid construction of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Mol. Phys. https://doi.org/10.1080/00268976.2019.1649494 (2019).

  • Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Clancy, A. J., Melbourne, J. & Shaffer, M. S. P. A one-step path to solubilised, purified or functionalised single-walled carbon nanotubes. J. Mater. Chem. A 3, 16708–16715 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, C. et al. Elevated solubility, liquid-crystalline section, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7, 4503–4510 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soper, A. Partial construction components from disordered supplies diffraction knowledge: an strategy utilizing empirical potential construction refinement. Phys. Rev. B 72, 104204 (2005).

    Article 

    Google Scholar
     

  • Mandle, R. J. Implementation of a cylindrical distribution perform for the evaluation of anisotropic molecular dynamics simulations. PLoS ONE 17, e0279679 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basma, N. S., Headen, T. F., Shaffer, M. S., Skipper, N. T. & Howard, C. A. Native construction and polar order in liquid N-methyl-2-pyrrolidone (NMP). J. Phys. Chem. B 122, 8963–8971 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered supplies. Science 340, 1226419 (2013).

    Article 

    Google Scholar
     

  • Voiry, D., Drummond, C. & Pénicaud, A. Portrait of carbon nanotube salts as soluble polyelectrolytes. Gentle Matt. 7, 7998–8001 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Carbon nanotube- and graphene-based nanomaterials and purposes in high-voltage supercapacitor: a evaluate. Carbon 141, 467–480 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Chen, N., Li, Z., Shao, H. & Qu, L. Frontiers of carbon supplies as capacitive deionization electrodes. Dalton Trans. 49, 5006–5014 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddons, G. P., Merchin, D., Again, J. H., Jeong, J. Ok. & Shim, M. Extremely environment friendly gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 4, 927–931 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Fogden, S. A., Howard, C. A., Heenan, R. Ok., Skipper, N. T. & Shaffer, M. S. Scalable methodology for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6, 54–62 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Skipper, N. et al. Native and long-range solute and solvent ordering in concentrated nanotube gels and options. ISIS Neutron and Muon Supply Information Journal https://doi.org/10.5286/ISIS.E.RB1910503 (2022).

  • Clancy, A. J. et al. Actual-time mechanistic research of carbon nanotube anion functionalisation by way of open circuit voltammetry. Chem. Sci. 10, 3300–3306 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *