Integrative catalytic pairs for environment friendly multi-intermediate catalysis


  • Vogt, C. & Weckhuysen, B. M. The idea of energetic web site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, B. et al. Single-atom catalysis of CO oxidation utilizing Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). This report launched the idea of SACs, during which single Pt atoms on a FeOx assist confirmed excessive exercise and stability for CO oxidation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X.-F. et al. Single-atom catalysts: a brand new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. & Corma, A. Metallic catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyriakou, G. et al. Remoted steel atom geometries as a technique for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Li, W., Wang, D. & Li, Y. Digital steel–assist interplay of single-atom catalysts and functions in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nie, L. et al. Activation of floor lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, L. et al. Low-temperature hydrogen manufacturing from water and methanol utilizing Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Atomically dispersed platinum supported on curved carbon helps for environment friendly electrocatalytic hydrogen evolution. Nat. Power 4, 512–518 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehmood, A. et al. Excessive loading of single atomic iron websites in Fe–NC oxygen discount catalysts for proton trade membrane gasoline cells. Nat. Catal. 5, 311–323 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the factitious photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tan, H. et al. Photocatalysis of water into hydrogen peroxide over an atomic Ga–N5 web site. Nat. Synth. 2, 557–563 (2023).

    Article 

    Google Scholar
     

  • Ji, S. et al. Matching the kinetics of pure enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Latest advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution response: syntheses, buildings, and properties. Adv. Power Mater. 12, 2200928 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Ok., Shan, H., Neumann, H., Lu, G.-P. & Beller, M. Environment friendly iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nat. Commun. 13, 1848 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. A heterogeneous iridium single-atom-site catalyst for extremely regioselective carbenoid O–H bond insertion. Nat. Catal. 4, 523–531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous methods for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bajada, M. A. et al. Gentle-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst. Nat. Synth. 2, 1092–1103 (2023).

    Article 

    Google Scholar
     

  • Yang, H. B. et al. Atomically dispersed Ni(I) because the energetic web site for electrochemical CO2 discount. Nat. Power 3, 140–147 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 manufacturing. Nat. Mater. 19, 436–442 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, T. et al. Copper-catalysed unique CO2 to pure formic acid conversion through single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021). This work investigated a single-atom Pb-alloyed Cu catalyst within the electrochemical CO2RR and revealed that remoted Pb atoms exactly tune the digital/geometric construction of the Cu catalyst however can’t work as energetic websites.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datye, A. Ok. & Guo, H. Single atom catalysis poised to transition from an educational curiosity to an industrially related expertise. Nat. Commun. 12, 895 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Yang, X., Zhang, J., Huang, Y. & Liu, B. In situ/operando strategies for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hulva, J. et al. Unraveling CO adsorption on mannequin single-atom catalysts. Science 371, 375–379 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, H. et al. Engineering single-atom electrocatalysts for enhancing kinetics of acidic volmer response. J. Am. Chem. Soc. 145, 13038–13047 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. B. et al. Identification of non-metal single atomic phosphorus energetic websites for the CO2 discount response. EES Catal. 1, 774–783 (2023). This work prolonged the definition of SACs to a household of non-metal catalytic centres.

    Article 

    Google Scholar
     

  • Gu, Y., Xi, B. J., Zhang, H., Ma, Y. C. & Xiong, S. L. Activation of main-group antimony atomic websites for oxygen discount catalysis. Angew. Chem. Int. Ed. 61, e202202200 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution response. Angew. Chem. Int. Ed. 58, 12252–12257 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fu, W. et al. Non-metal single-phosphorus-atom catalysis of hydrogen evolution. Angew. Chem. Int. Ed. 59, 23791–23799 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Ok. et al. Identification of energetic websites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for extremely environment friendly and pH-universal general water splitting. Nat. Commun. 11, 4246 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Breaking scaling relations to realize low-temperature ammonia synthesis by means of LiH-mediated nitrogen switch and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campos, J. Bimetallic cooperation throughout the periodic desk. Nat. Rev. Chem. 4, 696–702 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Rising dual-atomic-site catalysts for environment friendly vitality catalysis. Adv. Mater. 33, 2102576 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, W.-H., Yang, J. & Wang, D. Lengthy-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. 61, e202213318 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P., Xiong, X., Wang, D. & Li, Y. Advances and regulation methods of the energetic moiety in dual-atom web site catalysts for environment friendly electrocatalysis. Adv. Power Mater. 13, 2300884 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Atomic steel–non-metal catalytic pair drives environment friendly hydrogen oxidation catalysis in gasoline cells. Nat. Catal. 6, 916–926 (2023). This examine represented the primary definition and software of ICPs, during which the reactive *OH species adsorbed on the extra oxophilic P web site induced another thermodynamic pathway to facilely mix with the *H on the adjoining Ir atom, thus synergistically boosting the efficiency for HOR in gasoline cells.

  • He, Q. et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Simultaneous oxidative and reductive reactions in a single system by atomic design. Nat. Catal. 4, 134–143 (2021). By integrating two suitable single-atom methods of Pd and Fe as a yolk–shell construction, this catalyst concurrently catalysed nitroaromatic hydrogenation and alkene epoxidation reactions, resulting in a cascade synthesis of amino alcohols.

  • Chen, J. et al. Twin single-atomic Ni–N4 and Fe–N4 websites developing Janus hole graphene for selective oxygen electrocatalysis. Adv. Mater. 32, 2003134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, C. et al. Tailoring acidic oxygen discount selectivity on single-atom catalysts through modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, X. et al. Designing single-site alloy catalysts utilizing a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Z. et al. Understanding the inter-site distance impact in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, L. et al. Non-bonding interplay of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 143, 19417–19424 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, F. et al. Structural and reactivity results of secondary steel doping into iron-nitrogen-carbon catalysts for oxygen electroreduction. J. Am. Chem. Soc. 145, 14737–14747 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Atomic layer deposited Pt-Ru dual-metal dimers and figuring out their energetic websites for hydrogen evolution response. Nat. Commun. 10, 4936 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, T. et al. Engineering twin single-atom websites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem. Int. Ed. 61, e202115219 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Backside-up exact synthesis of steady platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Z. et al. Interlayer-confined NiFe twin atoms inside MoS2 electrocatalyst for ultra-efficient acidic general water splitting. Adv. Mater. 35, 2300505 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Atomically dispersed dual-metal web site catalysts for enhanced CO2 discount: mechanistic perception into energetic web site buildings. Angew. Chem. Int. Ed. 61, e202205632 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, N. et al. Excessive-density planar-like Fe2N6 construction catalyzes environment friendly oxygen discount. Matter 3, 509–521 (2020).

    Article 

    Google Scholar
     

  • Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and environment friendly electrochemical discount of CO2. Nat. Chem. 11, 222–228 (2019). This work reported a homologous binuclear DAC that includes steady Cu10Cu1x+ pair configurations, with Cu10 adsorbing CO2 and the neighbouring Cu1x+ adsorbing H2O, which thereby labored collectively to advertise the essential bimolecular step in CO2 discount.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Q. et al. Nickel dual-atom websites for electrochemical carbon dioxide discount. Nat. Synth. 1, 719–728 (2022).

    Article 

    Google Scholar
     

  • Hai, X. et al. Geminal-atom catalysis for cross-coupling. Nature 622, 754–760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018). This examine found the synergetic interplay between neighbouring Pt monomers that diminished the activation vitality barrier and underwent distinct response paths relative to remoted monomers.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Design of N-coordinated dual-metal websites: a steady and energetic Pt-free catalyst for acidic oxygen discount response. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Figuring out and tailoring C–N coupling web site for environment friendly urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Palladium and ruthenium dual-single-atom websites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic results stabilize the energetic web site and improve CO adsorption. Angew. Chem. Int. Ed. 62, e202307570 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution response. Nat. Commun. 14, 4449 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q.-P. et al. Picture-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth. 3, 497–506 (2024). This work proposed a common ‘navigation and positioning’ methodology to exactly and scalably synthesize a collection of heteronuclear DACs and demonstrated excellent photocatalytic HER exercise for as-prepared Zn1Ru1/DACs.

  • Du, J. et al. CoIn dual-atom catalyst for hydrogen peroxide manufacturing through oxygen discount response in acid. Nat. Commun. 14, 4766 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for inexperienced manufacturing of ammonia. Nat. Maintain. 6, 169–179 (2023).

    Article 

    Google Scholar
     

  • Younger, D. Computational Chemistry: A Sensible Information for Making use of Strategies to Actual World Issues (Wiley, 2001).

  • Ding, J. et al. Room-temperature chemoselective hydrogenation of nitroarene over atomic steel–nonmetal catalytic pair. Adv. Mater. 36, 2306480 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Boosting the proton-coupled electron switch through Fe−P atomic pair for enhanced electrochemical CO2 discount. Angew. Chem. Int. Ed. 62, e202311550 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, J. et al. A tin-based tandem electrocatalyst for CO2 discount to ethanol with 80% selectivity. Nat. Power 8, 1386–1394 (2023). This examine reported that an ICP comprising Sn and O energetic websites might adsorb *CHO and *CO(OH) intermediates, respectively, subsequently selling CC bond formation by means of a tandem formylbicarbonate coupling pathway in electrochemical CO2 discount to ethanol.

    Article 
    CAS 

    Google Scholar
     

  • Ding, J. et al. Circumventing CO2 discount scaling relations over the heteronuclear diatomic catalytic pair. J. Am. Chem. Soc. 145, 11829–11836 (2023). On this report, the adsorption configuration transitioned from the bridge configuration of CO2 on Fe1Mo1/ICP to the linear configuration of CO on the Fe1 centre, which resulted in breaking the scaling relationship within the CO2RR, concurrently selling CO2 activation and CO launch.

  • Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koper, M. T. M. Thermodynamic concept of multi-electron switch reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gao, R. et al. Pt/Fe2O3 with Pt–Fe pair websites as a catalyst for oxygen discount with ultralow Pt loading. Nat. Power 6, 614–623 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh–WOx pair web site catalysts. Nature 609, 287–292 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, L. et al. Cooperative Rh–O5/Ni(Fe) web site for environment friendly biomass upgrading coupled with H2 manufacturing. J. Am. Chem. Soc. 145, 17577–17587 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Peripheral-nitrogen results on the Ru1 centre for extremely environment friendly propane dehydrogenation. Nat. Catal. 5, 1145–1156 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xia, W. et al. Adjoining copper single atoms promote C–C coupling in electrochemical CO2 discount for the environment friendly conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Power 6, 1054–1066 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 34, 2201796 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. A sulfur-tethering synthesis technique towards high-loading atomically dispersed noble steel catalysts. Sci. Adv. 5, eaax6322 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Lengthy-term stability challenges and alternatives in acidic oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 62, e202216645 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. & Corma, A. Identification of the energetic websites in supported subnanometric steel catalysts. Nat. Catal. 4, 453–456 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ajayi, T. M. et al. Characterization of only one atom utilizing synchrotron X-rays. Nature 618, 69–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced, I. X., Tang, W., Neurock, M. & Yates, J. T. Spectroscopic statement of twin catalytic websites throughout oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. et al. Direct statement of noble steel nanoparticles reworking to thermally steady single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and energetic species on the single catalyst particle stage. Nat. Catal. 2, 986–996 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maurer, F. et al. Monitoring the formation, destiny and consequence for catalytic exercise of Pt single websites on CeO2. Nat. Catal. 3, 824–833 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing energetic machine studying. Nature 581, 178–183 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis through an associative mechanism. Nat. Commun. 9, 1610 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G., Jiang, X.-L., Jiang, Y.-F., Wang, Y.-G. & Li, J. Screened Fe3 and Ru3 single-cluster catalysts anchored on MoS2 helps for selective hydrogenation of CO2. ACS Catal. 13, 8413–8422 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles