Full on-device manipulation of olefin metathesis for exact manufacturing

Full on-device manipulation of olefin metathesis for exact manufacturing


  • Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Trnka, T. M. & Grubbs, R. H. The event of L2X2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fürstner, A. Olefin metathesis and past. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).

    Article 

    Google Scholar
     

  • Grubbs, R. H. & Chang, S. Current advances in olefin metathesis and its utility in natural synthesis. Tetrahedron 54, 4413–4450 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Nicolaou, Okay. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in whole synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Current advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Becker, M. R., Watson, R. B. & Schindler, C. S. Past olefins: new metathesis instructions for synthesis. Chem. Soc. Rev. 47, 7867–7881 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hilf, S. & Kilbinger, A. F. M. Purposeful finish teams for polymers ready utilizing ring-opening metathesis polymerization. Nat. Chem. 1, 537–546 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mutlu, H., de Espinosa, L. M. & Meier, M. A. R. Acyclic diene metathesis: a flexible software for the development of outlined polymer architectures. Chem. Soc. Rev. 40, 1404–1445 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sinclair, F., Alkattan, M., Prunet, J. & Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem. 8, 3385–3398 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A typical system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. B., Ott, Okay. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanaethylene interconversion. Investigation of a degenerate olefin metathesis response. J. Am. Chem. Soc. 104, 7491–7496 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, Okay., Tanaka, Okay., Takeo, H. & Matsumura, C. Intermediates for the degenerate and productive metathesis of propene elucidated by the metathesis response of (Z)-propene-1d1. J. Am. Chem. Soc. 109, 2422–2425 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Stewart, I. C., Keitz, B. Okay., Kuhn, Okay. M., Thomas, R. M. & Grubbs, R. H. Nonproductive occasions in ring-closing metathesis utilizing ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Easter, Q. T. & Blum, S. A. Proof for dynamic chemical kinetics at particular person molecular ruthenium catalysts. Angew. Chem. Int. Ed. 57, 1572–1575 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Easter, Q. T., Garcia, A. I. V. & Blum, S. A. Single-polymer–particle development kinetics with molecular catalyst speciation and single-turnover imaging. ACS Catal. 9, 3375–3383 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Single polymer development dynamics. Science 358, 352–355 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ibrahem, I., Yu, M., Schrock, R. R. & Hoveyda, A. H. Extremely Z– and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc. 131, 3844–3845 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flook, M. M., Jiang, A. J., Schrock, R. R., Müller, P. & Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide advanced. J. Am. Chem. Soc. 131, 7962–7963 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, A. J., Zhao, Y., Schrock, R. R. & Hoveyda, A. H. Extremely Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 131, 16630–16631 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides by means of catalytic cross-metathesis. Nature 531, 459–465 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh, M. J. et al. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature 542, 80–85 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Torker, S., Müller, A. & Chen, P. Constructing stereoselectivity right into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization. Angew. Chem. Int. Ed. 49, 3762–3766 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Endo, Okay. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keitz, B. Okay., Endo, Okay., Herbert, M. B. & Grubbs, R. H. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 133, 9686–9688 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Readily accessible and simply modifiable Ru-based catalysts for environment friendly and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Reactivity and selectivity variations between catecholate and catechothiolate Ru complexes. Implications relating to design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337–14340 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Unveiling the complete response path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, A. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 6, 266–275 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Actual-time monitoring of response stereochemistry by means of single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Electrical field-catalyzed single-molecule Diels–Alder response dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y., Yang, C., Zhang, L. & Guo, X. Tunable interferometric results between single-molecule Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 145, 6577–6584 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, Y., Yang, C., Zhou, S., Liu, Z. & Guo, X. A single-molecule memristor primarily based on an electric-field-driven dynamical construction reconfiguration. Adv. Mater. 34, 2204827 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).

    Article 

    Google Scholar
     

  • Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as instruments for chemical and biochemical evaluation. Nat. Chem. 15, 600–614 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect digital reactions on the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson, P. W. Extra is completely different. Science 177, 393–396 (1972).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Strogatz, S. et al. Fifty years of ‘Extra is completely different’. Nat. Rev. Phys. 4, 508–510 (2022).

    Article 

    Google Scholar
     

  • Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Construction and reactivity/selectivity management by oriented-external electrical fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shaik, S., Danovich, D., Pleasure, J., Wang, Z. & Stuyver, T. Electrical-field mediated chemistry: uncovering and exploiting the potential of (oriented) electrical fields to exert chemical catalysis and response management. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shaik, S., Mandal, D. & Ramanan, R. Oriented electrical fields as future sensible reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dief, E. M. & Darwish, N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 108 V m−1: a floor bonding and a single-protein circuit examine. Chem. Sci. 14, 3428–3440 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder response. Nature 531, 88–91 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09 (Gaussian, 2013).

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and round dichroism spectra utilizing density useful power fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping operate in dispersion corrected density useful idea. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barone, V. & Cossi, M. Quantum calculation of molecular energies and power gradients in answer by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *