Focused protein degradation by way of mobile trafficking of nanoparticles

Focused protein degradation by way of mobile trafficking of nanoparticles


  • Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Focused protein degradation: increasing the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chamberlain, P. P. & Hamann, L. G. Improvement of focused protein degradation therapeutics. Nat. Chem. Biol. 15, 937–944 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L., Zhao, J., Zhong, Ok., Tong, A. & Jia, D. Focused protein degradation: mechanisms, methods and software. Sign Transduct. Goal. Ther. 7, 113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Z. & Crews, C. M. Current developments in PROTAC-mediated protein degradation: from bench to clinic. ChemBioChem 23, e202100270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, D. et al. AUTACs: cargo-specific degraders utilizing selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, C. H. et al. The AUTOTAC chemical biology platform for focused protein degradation by way of the autophagy–lysosome system. Nat. Commun. 13, 904 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garber, Ok. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marei, H. et al. Antibody concentrating on of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. Most cancers nanomedicine towards medical translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donahue, N. D., Acar, H. & Wilhelm, S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautam, L. et al. Multicompartment methods: a putative service for mixed drug supply and concentrating on. Drug Discov. At present 27, 1184–1195 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchikama, Ok. & An, Z. Antibody–drug conjugates: current advances in conjugation and linker chemistries. Protein Cell 9, 33–46 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. J., Johnson, D. E. & Grandis, J. R. EGFR-targeted therapies within the post-genomic period. Most cancers Metastasis Rev. 36, 463–473 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kjær, I. et al. Cetuximab resistance in squamous carcinomas of the higher aerodigestive tract is pushed by receptor tyrosine kinase plasticity: potential for mAb mixtures. Mol. Most cancers Ther. 15, 1614–1626 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Position of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Most cancers 18, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, D.-Y. & Bang, Y.-J. HER2-targeted therapies—a job past breast most cancers. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Sign Transduct. Goal. Ther. 6, 315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devarakonda, C. Ok. V., Meredith, E., Ghosh, M. & Shapiro, L. H. Coronavirus receptors as immune modulators. J. Immunol. 206, 923–929 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenchov, R., Hen, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles—from liposomes to mRNA vaccine supply, a panorama of analysis variety and development. ACS Nano 15, 16982–17015 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iversen, T.-G., Skotland, T. & Sandvig, Ok. Endocytosis and intracellular transport of nanoparticles: current data and want for future research. Nano At present 6, 176–185 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, G. et al. LYTACs that have interaction the asialoglycoprotein receptor for focused protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. Molecular foundation of V-ATPase inhibition by bafilomycin A1. Nat. Commun. 12, 1782 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. G., Codogno, P. & Zhang, H. Equipment, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collier, J. J. et al. Developmental penalties of faulty ATG7-mediated autophagy in people. N. Engl. J. Med. 384, 2406–2417 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. & Hu, Z. Focusing on peptide-based probes for molecular imaging and analysis. Adv. Mater. 31, 1804827 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Huang, L. et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 278, 15532–15540 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, C. et al. Autophagy negatively regulates Wnt signalling by selling dishevelled degradation. Nat. Cell Biol. 12, 781–790 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam, M. A. et al. Restoration of tumour-growth suppression in vivo by way of systemic nanoparticle-mediated supply of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomayko, M. M. & Reynolds, C. P. Willpower of subcutaneous tumor measurement in athymic (nude) mice. Most cancers Chemother. Pharmacol. 24, 148–154 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *