Focused drug supply programs for atherosclerosis | Journal of Nanobiotechnology

Focused drug supply programs for atherosclerosis | Journal of Nanobiotechnology


  • Takaoka M, Zhao X, Lim HY, Magnussen CG, Ang O, Suffee N et al. Early intermittent hyperlipidaemia alters tissue macrophages to gas atherosclerosis. Nature. 2024;634(8033):1–3.

  • Björkegren JLM, Lusis AJ. Atherosclerosis: latest developments. Cell. 2022;185(10):1630–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Qin S, Gui L, et al. Mild-up lipid droplets for the visualization of lipophagy and atherosclerosis by coumarin-derived bioprobe. Chin Chem Lett. 2021;32(8):2385–9.

    Article 
    CAS 

    Google Scholar
     

  • Zanganeh S, Doroudian M, Nowzari ZR, et al. Viral Nanoparticles-Mediated supply of therapeutic cargo. Adv Ther. 2023;6(10):2300082.

    Article 
    CAS 

    Google Scholar
     

  • Lei W, Shen F, Chang N, et al. Chemical proteomics reveals ligustilide targets SMAD3, inhibiting collagen synthesis in aortic endothelial cells. Chin Chem Lett. 2021;32(1):190–3.

    Article 
    CAS 

    Google Scholar
     

  • Kawai Ok, Finn AV, Virmani R. Subclinical atherosclerosis: half 1: what’s it? Can it’s outlined on the histological stage? Arteriosclerosis, Thrombosis, and Vascular Biology. 2024;44(1):12–23.

  • Okamura T, Tsukamoto Ok, Arai H, et al. Japan atherosclerosis society (JAS) pointers for prevention of atherosclerotic cardiovascular ailments 2022. J Atheroscler Thromb. 2024;31(6):641–853.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New perception into dyslipidemia-induced mobile senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022;97(5):1844–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Y, Huang Y, Zhou F, et al. Macrophage-targeted nanomedicine for persistent ailments immunotherapy. Chin Chem Lett. 2022;33(2):597–612.

    Article 
    CAS 

    Google Scholar
     

  • Cao J, Liu S, Xie H, Zhang Y, Zeng Y. The connection between the visceral adiposity index and carotid atherosclerosis in numerous genders and age teams. Saudi Med J. 2022;43(2):169–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bu LL, Yuan HH, Xie LL, Li X, Zhang Y, Chen J, et al. New daybreak for atherosclerosis: vascular endothelial cell senescence and demise. Int J Mol Sci. 2023;24(20):15160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck Ok, et al. Pathophysiology Atherosclerosis Int J Mol Sci. 2022;23(6):3346.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gusev E, Sarapultsev A. Atherosclerosis and irritation: insights from the speculation of common pathological processes. Int J Mol Sci. 2023;24(9):7910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, Chen G, Wu F, Cao Y, Yang F, You T, et al. Endothelial CCRL2 induced by disturbed move promotes atherosclerosis by way of chemerin-dependent Β2 integrin activation in monocytes. Cardiovasc Res. 2023;119(9):1811–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Y, Jing H, Vong LB, et al. Latest advances in focused stimuli-responsive nano-based drug supply programs combating atherosclerosis. Chin Chem Lett. 2022;33(4):1705–17.

    Article 
    CAS 

    Google Scholar
     

  • Attiq A, Afzal S, Ahmad W, et al. Hegemony of irritation in atherosclerosis and coronary artery illness. Eur J Pharmacol. 2024;966:176338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díez-Díez M, Ramos-Neble BL, de la Barrera J, et al. Unidirectional affiliation of clonal hematopoiesis with atherosclerosis improvement. Nat Med. 2024;30(10):2857–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Melnichenko AA, Grechko AV, et al. Hypertension as a danger issue for atherosclerosis: cardiovascular danger evaluation. Entrance Cardiovasc Med. 2022;9:959285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng X, Wang J, Yu S et al. Advances within the remedy of atherosclerosis with ligand-modified nanocarriers. Exploration. 2024;4(3):20230090.

  • Khan A, Roy P, Ley Ok. Breaking tolerance: the autoimmune facet of atherosclerosis. Nat Rev Immunol. 2024;24(9):670–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adkar SS, Leeper NJ. Efferocytosis in atherosclerosis. Nat Evaluations Cardiol. 2024;21(11):762–79.

    Article 

    Google Scholar
     

  • Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic components and potential position of IL-6. Nat Rev Cardiol. 2021;18(1):58–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Man JJ, Beckman JA, Jaffe IZ. Intercourse as a organic variable in atherosclerosis. Circ Res. 2020;126(9):1297–09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroope C, Nettersheim FS, Coon B, et al. Dysregulated mobile metabolism in atherosclerosis: mediators and therapeutic alternatives. Nat Metabolism. 2024;6(4):617–38.

    Article 

    Google Scholar
     

  • Xu X, Xu X, Ma M, et al. The mechanisms of ferroptosis and its position in atherosclerosis. Biomed Pharmacother. 2024;171:116112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavillegrand JR, Al-Rifai R, Thietart S, et al. Alternating high-fat weight-reduction plan enhances atherosclerosis by neutrophil reprogramming. Nature. 2024;634(8033):447–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Meyer GRY, Zurek M, Puylaert P, et al. Programmed demise of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Evaluations Cardiol. 2024;21(5):312–25.

    Article 

    Google Scholar
     

  • Cao Y, Liu Y, Zhang T, Luo X, Li J, Zhu H, et al. Comparative evaluation on single- and multiherb methods in coronary artery atherosclerosis remedy. Cardiol Res Pract. 2021;2021(1):6621925.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiarito M, Sanz-Sánchez J, Cannata F, Cao D, Godino C, Reimers B, et al. Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in sufferers with established atherosclerosis: a scientific evaluation and meta-analysis. Lancet. 2020;395(10235):1487–95.

    Article 
    PubMed 

    Google Scholar
     

  • Lee Y, Kim BR, Kang GH, Jang MJ, Park SY, Choi YH, et al. The consequences of PPAR agonists on atherosclerosis and nonalcoholic fatty liver illness in ApoE–/– FXR–/– mice. Endocrinol Metab. 2021;36(6):1243.

    Article 
    CAS 

    Google Scholar
     

  • Xu M, Wang W, Cheng J, et al. Results of mitochondrial dysfunction on mobile operate: position in atherosclerosis. Biomed Pharmacother. 2024;174:116587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Y, Xu Y, Liu X, Chen L, Wang Q, Zhang P, et al. Simultaneous Rosiglitazone launch and low-density lipoprotein elimination by chondroitin sodium sulfate/cyclodextrin/poly (acrylic acid) composite adsorbents for atherosclerosis remedy. Biomacromolecules. 2024;25(5):3141–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu F, Zhu L, Wang Y, Solar Z, Zhang J, et al. Molecular mechanism of Rosiglitazone inhibiting atherosclerosis in ApoE mice by regulating ABCA1 reverse ldl cholesterol transport. Acta Med Mediterr. 2022;38(1):365–70.


    Google Scholar
     

  • Mu D, Li J, Qi Y, Guo X, Zhao L, Ma H, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate Statins for assuaging atherosclerosis. J Nanobiotechnol. 2020;18:1–12.

    Article 

    Google Scholar
     

  • Gu Y, Dai Q, Ma C, Wang Z, Wang Z, Yuan H, et al. Hair follicle-targeting drug supply methods for the administration of hair follicle-associated problems. Asian J Pharm Sci. 2022;17(3):221–33.


    Google Scholar
     

  • Waksman R, Merdler I, Case BC, et al. Concentrating on irritation in atherosclerosis: overview, technique and instructions. EuroIntervention. 2024;20(1):32–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Zhang H, Chen Y, Liu X, Wang Z, Zhao P, et al. Fucoidan-based dual-targeting mesoporous polydopamine for enhanced MRI-guided chemo-photothermal remedy of HCC by way of P-selectin-mediated drug supply. Asian J Pharm Sci. 2022;17(3):327–39.

    CAS 

    Google Scholar
     

  • Zhang X, Li Y, Wang Z, Liu J, Chen H, Yang F, et al. Macrophage membrane-mediated focused drug supply for remedy of spinal wire harm whatever the macrophage polarization States. Asian J Pharm Sci. 2022;17(4):457–65.

    CAS 

    Google Scholar
     

  • Wang J, Liu Y, Zhao W, Chen X, Yang F, Wu H, et al. Biointerface engineering nanoplatforms for cancer-targeted drug supply. Asian J Pharm Sci. 2023;18(2):123–32.

    CAS 

    Google Scholar
     

  • Zhang T, Li Y, Wang X, Chen L, Yang Z, Qian Q, et al. Amino acid transporters: rising roles in drug supply for tumor-targeting remedy. Asian J Pharm Sci. 2023;18(5):456–68.


    Google Scholar
     

  • Soehnlein O, Libby P. Concentrating on irritation in atherosclerosis—from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu X, Majumder J, Taratula O, Wang Z, Zhuang Y, Tong J et al. Nanotechnology-based technique for enhancing therapeutic efficacy in pancreatic most cancers: receptor-targeted drug supply by somatostatin analog. Int J Mol Sci 2024;25(10).

  • Langerbeins P, Giza A, Robrecht S, Cramer P, Al-Sawaf O, Fink AM et al. Infections in sufferers with persistent lymphocytic leukemia handled with time-limited focused drug mixtures. Am J Hematol. 2024;TBD.

  • Bhat A, Malik A, Yadav P, Singh P, Verma V, Sharma R et al. Mesenchymal stem cell-derived extracellular vesicles: latest therapeutics and focused drug supply advances. J Extracell Biol 2024;3(5).

  • Rajendran SM, Rajagopal P, Jayaraman S, Kumar G, Mohan V, Arumugam P, et al. Focused remedy: position of liposome-based drug supply in advancing oral most cancers remedy. Oral Oncol Rep. 2024;10:100445.

    Article 

    Google Scholar
     

  • Chu R, Wang Y, Kong J, Zhao T, Ma Y, Zhang W et al. Lipid nanoparticles because the drug service for focused remedy of hepatic problems. J Mater Chem B. 2024;TBD.

  • Xia X, Li X, Xie F, Gao Z, Zhou Y, Wang S et al. Non-targeted metabonomic evaluation of plasma in sufferers with atherosclerosis by liquid chromatography-mass spectrometry. Ann Transl Med 2022;10(3).

  • Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, et al. Ferroptosis: a possible goal for the remedy of atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2024;56(3):331–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Amadori L, Calcagno C, Fernandez DM, Koplev S, Fernandez N, Kaur R, et al. Erratum: writer correction: programs immunology-based drug repurposing framework to focus on irritation in atherosclerosis. Nat Cardiovasc Res. 2023;2(8):793.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt pathways as a possible goal pathway in atherosclerosis. J Lipid Atheroscler. 2023;12(3):223–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu Y, Jin S. Caveolin-1 in endothelial cells: a possible therapeutic goal for atherosclerosis. Heliyon 2023;9(8).

  • Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, et al. The translational potential of miR-26 in atherosclerosis and improvement of brokers for its goal genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol. 2024;23(1):21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, et al. Interleukin-1 receptor accent protein Blockade limits the event of atherosclerosis and reduces plaque irritation. Cardiovasc Res. 2024;120(6):581–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Li Z, Gu Y, et al. A evaluation of pharmaceutical and scientific research of the Ldl cholesterol-Decreasing drug PCSK9 inhibitor inclisiran. J Med Dev Sci. 2025;10(1):28–33.


    Google Scholar
     

  • Li WW, Guo ZM, Wang BC, et al. PCSK9 induces endothelial cell autophagy by regulating the PI3K/ATK pathway in atherosclerotic coronary coronary heart illness. Clin Hemorheol Microcirc. 2025;89(1):55–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Tune J, Zhang X, et al. Understanding drug interactions in antiplatelet remedy for atherosclerotic vascular illness: A scientific evaluation. CNS Neurosci Ther. 2025;31(2):e70258.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eslami M, Monemi M, Nazari MA, et al. The Anti-inflammatory potential of tricyclic antidepressants (TCAs): A novel therapeutic method to atherosclerosis pathophysiology. Prescription drugs. 2025;18(2):197.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardekani FM, Zibaeenezhad MJ, Sayadi M, et al. Ten-year atherosclerosis heart problems (ASCVD) danger rating and its parts amongst nomadic inhabitants in Southern Iran: A population-based research. Clin Epidemiol World Well being. 2025;31:101913.

    Article 

    Google Scholar
     

  • Karrar HR, Nouh MI, Alnami AA, et al. Latest advances and views of atherosclerotic occlusive illness. Ann Afr Med. 2025;24(2):220–4.

  • Gu B, Li M, Li D et al. CRISPR-Cas9 focusing on PCSK9: A promising therapeutic method for atherosclerosis. J Cardiovasc Transl Res, 2025:1–18. https://doi.org/10.1007/s12265-024-10587-7.

  • Hettwer J, Hinterdobler J, Miritsch B, et al. Interleukin-1β suppression dampens inflammatory leucocyte manufacturing and uptake in atherosclerosis. Cardiovascular Res. 2022;118(13):2778–91.

    Article 
    CAS 

    Google Scholar
     

  • Mehta S. Theranostic-Nanoparticles Used for the Therapy of Atherosclerosis[M]//Nanoparticles within the Administration of Atherosclerosis: A Machine-Generated Literature Overview. Cham: Springer Nature Switzerland, 2025:369–417.

  • He G, Ni Y, Hua R, et al. Latexin deficiency limits foam cell formation and ameliorates atherosclerosis by selling macrophage phenotype differentiation. Cell Demise Dis. 2024;15(10):754.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholls SJ, Nelson AJ. New targets and mechanisms of motion for lipid-lowering and anti inflammatory therapies in atherosclerosis: the place does the sphere stand? Skilled Opin Ther Targets. 2024;28(5):375–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese language natural extracts: latest proof and views. Phytother Res. 2024;38(6):2892–930.

    Article 
    PubMed 

    Google Scholar
     

  • Deng Y, Liu L, Li Y et al. pH-sensitive nano-drug supply programs dual-target endothelial cells and macrophages for enhanced remedy of atherosclerosis. Drug Supply Translational Res, 2025:1–17. https://doi.org/10.1007/s13346-025-01791-2.

  • Sopić M, Vladimirov S, Munjas J, et al. Concentrating on noncoding RNAs to deal with atherosclerosis. Br J Pharmacol. 2025;182(2):220–45.

    Article 
    PubMed 

    Google Scholar
     

  • Liu B, Su L, Lavatory SJ, Gao Y, Khin E, Kong X, et al. Matrix metallopeptidase 9 contributes to the start of plaque and is a possible biomarker for the early identification of atherosclerosis in asymptomatic sufferers with diabetes. Entrance Endocrinol (Lausanne). 2024;15:1369369.

    Article 
    PubMed 

    Google Scholar
     

  • Jia Y, Zou L, Xue M, Zhang X, Xiao X. Analysis of peri-plaque pericoronary adipose tissue Attenuation in coronary atherosclerosis utilizing a dual-layer spectral detector CT. Entrance Med (Lausanne). 2024;11:1357981.

    Article 
    PubMed 

    Google Scholar
     

  • Abela GS, Katkoori VR, Pathak DR, Bumpers HL, Leja M, Abideen ZU, et al. Ldl cholesterol crystals induce mechanical trauma, irritation, and neo-vascularization in strong cancers as in atherosclerosis. Am Coronary heart J Plus. 2023;35:100317.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Wang ZW, Fang LJ, Chen R, Huang Y, Zhang M, et al. Programmed cell demise in atherosclerosis and vascular calcification. Cell Demise Dis. 2022;13(5):467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Ok, Yan F, Qin X, Wei L, Wang X, Chen Y, et al. Mitochondrial dysfunction in vascular endothelial cells and its position in atherosclerosis. Entrance Physiol. 2022;13:1084604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madaudo C, Coppola G, Parlati ALM, et al. Discovering irritation in atherosclerosis: insights from pathogenic pathways to scientific follow. Int J Mol Sci. 2024;25(11):6016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Chen C, Yang Y. Identification and validation of candidate gene module together with immune cells infiltration patterns in atherosclerosis development to plaque rupture by way of transcriptome evaluation. Entrance Cardiovasc Med. 2022;9:894879.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, He H, Mao Y, et al. Advances in atherosclerosis theranostics Harnessing iron oxide-based nanoparticles. Adv Sci. 2024;11(17):2308298.

    Article 
    CAS 

    Google Scholar
     

  • Singh D, Rai V, Agrawal DK. Non-coding RNAs in regulating plaque development and reworking of extracellular matrix in atherosclerosis. Int J Mol Sci. 2022;23(22):13731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Jia X, Wang Y et al. Caveolin-1-Mediated LDL Transcytosis throughout Endothelial Cells in Atherosclerosis. Atherosclerosis. 2025:119113.

  • Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: Understanding the unstable plaque. Primary Res Cardiol. 2024;119(1):35–56.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Ge S, Ni B, Yan C, Chen Y, Wang X, et al. Augmenting ATG14 alleviates atherosclerosis and inhibits irritation by way of promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 2021;17(12):4218–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasheminasabgorji E, Jha J. Dyslipidemia, diabetes and atherosclerosis: position of irritation and ROS-redox-sensitive components. Biomedicines. 2021;9(11):1602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samal SK, Fröbert O, Kindberg J, Vesterberg O, Overgaard MT, Blomqvist C, et al. Potential pure immunization in opposition to atherosclerosis in hibernating bears. Sci Rep. 2021;11(1):12120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen RV, Fuster V, Bundgaard H, et al. Personalised intervention primarily based on early detection of atherosclerosis: JACC state-of-the-art evaluation. J Am Coll Cardiol. 2024;83(21):2112–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Z, Hou L, Luo W, et al. Myocardial infarction drives educated immunity of monocytes, accelerating atherosclerosis. Eur Coronary heart J. 2024;45(9):669–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orecchioni M, Kobiyama Ok, Winkels H, Ghosh A, Oakley G, Rappaport J, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 manufacturing. Science. 2022;375(6577):214–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Z, Chen W, Hu Ok, et al. Resolvin D1 supply to lesional macrophages utilizing antioxidative black phosphorus nanosheets for atherosclerosis remedy. Nat Nanotechnol. 2024;19(9):1386–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gáll T, Nagy P, Garai D, Demjén D, Csanády M, Szabó AJ, et al. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular injury in atherosclerosis. Redox Biol. 2022;57:102504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickett JR, Wu Y, Zacchi LF, Michela P, Secchiero P, Mandrioli J, et al. Concentrating on endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and improvement of vascular cell adhesion molecule-1–directed novel therapeutics. Cardiovasc Res. 2023;119(13):2278–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amponsah-Offeh M, Ciliberti G, Polycarpou-Schwarz M, Dietrich F, Müller M, Santag S, et al. Position of ADAR2-mediated innate immune responses in vascular irritation and atherosclerosis. Cardiovasc Res. 2024;120(Suppl 1):169.


    Google Scholar
     

  • Wei X, Lin H, Zhang B, Huang X, Jiang Y, Luo F, et al. Phoenixin-20 prevents ox-LDL-induced attachment of monocytes to human aortic endothelial cells (HAECs): A protecting implication in atherosclerosis. ACS Chem Neurosci. 2021;12(6):990–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltani S, Boozari M, Cicero AFG, Sahebkar A. Results of phytochemicals on macrophage ldl cholesterol efflux capability: impression on atherosclerosis. Phytother Res. 2021;35(6):2854–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hettwer J, Hinterdobler J, Miritsch B, Schott H, Feger D, Wolfram L, et al. Interleukin-1β suppression dampens inflammatory leucocyte manufacturing and uptake in atherosclerosis. Cardiovasc Res. 2022;118(13):2778–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natarajan N, Florentin J, Johny E, et al. Aberrant mitochondrial DNA synthesis in macrophages exacerbates irritation and atherosclerosis. Nat Commun. 2024;15(1):7337.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai JH, Hung LF, Huang CY, Wang SH, Tsai YF, Lin CL, et al. Mitochondrial protein CMPK2 regulates IFN alpha-enhanced foam cell formation, probably contributing to untimely atherosclerosis in SLE. Arthritis Res Ther. 2021;23:1–12.

    Article 

    Google Scholar
     

  • Zhang T, Pang C, Xu M, et al. The position of immune system in atherosclerosis: molecular mechanisms, controversies, and future prospects. Hum Immunol. 2024;85(2):110765.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kłósek M, Kurek-Górecka A, Balwierz R, Oszmianski J, Górecki M, Sroka Z, et al. The impact of methyl-derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and eotaxin launch by activated RAW264.7 macrophages. Molecules. 2024;29(10):2239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langer HF. Continual irritation in atherosclerosis—The CD40L/CD40 axis belongs to dendritic cells and T cells, not platelets. J Thromb Haemost. 2022;20(1):3–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Liu J, Hu W, et al. Concentrating on pro-inflammatory T cells as a novel therapeutic method to probably resolve atherosclerosis in people. Cell Res. 2024;34(6):407–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Wu H, Liu Y, Wang Y, Zhu Q, Zhang W, et al. Inhibiting vascular clean muscle cell proliferation mediated by osteopontin by way of regulating intestine microbial lipopolysaccharide: A novel mechanism for Paeonol in atherosclerosis remedy. Entrance Pharmacol. 2022;13:936677.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Dangle S, Xu S, et al. Macrophage polarization and inflammatory mechanisms in atherosclerosis. Implications for Prevention and Therapy. Heliyon; 2024.

  • Zheng M, Li L, Liu Y, Wu T, Zhou X, Zhao J, et al. Silencing ferritin alleviates atherosclerosis in mice by way of regulating the expression ranges of matrix metalloproteinases and interleukins. Acta Biochim Pol. 2021;68(4):705–10.

    CAS 
    PubMed 

    Google Scholar
     

  • van der Vorst EPC, Maas SL, Theodorou Ok, Koenen RR, Döring Y, Weber C, et al. Endothelial ADAM10 controls mobile response to OxLDL and its deficiency exacerbates atherosclerosis with intraplaque hemorrhage and neovascularization in mice. Entrance Cardiovasc Med. 2023;10:974918.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Blanchard V, Francis GA. Clean muscle cell—macrophage interactions resulting in foam cell formation in atherosclerosis: location, location, location. Entrance Physiol. 2022;13:921597.

    Article 

    Google Scholar
     

  • Fang F, Geng Y, Yin S, Lin J, Zhu Z, Zhang Q et al. Tuning macrophages for atherosclerosis remedy. Regen Biomater 2023;10.

  • Li S, He RC, Wu SG, et al. LncRNA PSMB8-AS1 instigates vascular irritation to irritate atherosclerosis. Circul Res. 2024;134(1):60–80.

    Article 
    CAS 

    Google Scholar
     

  • Omelchenko A, Kostyuk S, Rudenko A, Makarov V, Ivashchenko Y, Golovach S et al. Affiliation of atherosclerosis-related mitochondrial mutations with the mitochondrial dysfunction. Atherosclerosis 2023;379:S13.

  • Guo J, Ma J, Cai Ok, Shi S, Zhang H, Xue Y, et al. Isoflavones from semen Sojae preparatum enhance atherosclerosis and oxidative stress by modulating Nrf2 signaling pathway by way of estrogen-like results. Evid Primarily based Complement Alternat Med. 2022;2022(1):4242099.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Violi F, Pignatelli P, Valeriani E. Oxidative stress and atherosclerosis: fundamental and scientific open points. Pol Coronary heart J (Kardiologia Polska). 2024;82(7–8):689–91.

    Article 

    Google Scholar
     

  • Shiina Ok, Sakurai Y, Hiraoka A, Abe M, Fujimoto Y, Yoshimoto T, et al. Differential impact of a Xanthine oxidase inhibitor on arterial stiffness and carotid atherosclerosis: a subanalysis of the PRIZE research. Hypertens Res. 2022;45(4):602–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Cao H, Chen B, et al. Simultaneous in vivo imaging of neutrophil elastase and oxidative stress in atherosclerotic plaques utilizing a unimolecular photoacoustic probe. Angew Chem. 2024;136(46):e202411840.

    Article 

    Google Scholar
     

  • Becker PH, Le Guillou E, Duque M, Ziegler F, Herbin O, Boileau C, et al. Ldl cholesterol accumulation induced by acetylated LDL publicity modifies the enzymatic actions of the TCA cycle with out impairing the respiratory chain performance in macrophages. Biochimie. 2022;200:87–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XQ, Chen JW, Lu L, Li Y, Zhang H, Guo H, et al. Elevated 12/15-lipoxygenase by disturbed move promotes endothelial dysfunction and the event of atherosclerosis. Eur Coronary heart J. 2023;44(Suppl 2):3266.


    Google Scholar
     

  • Mathew AV, Zeng L, Atkins KB, Casanova A, Guan L, Lewandowski ED et al. Deletion of bone marrow myeloperoxidase attenuates persistent kidney illness accelerated atherosclerosis. J Biol Chem 2021;296.

  • Queiroz MIC, Lazaro CM, Dos Santos LMB, et al. Vivo persistent publicity to inorganic mercury worsens hypercholesterolemia, oxidative stress and atherosclerosis within the LDL receptor knockout mice. Ecotoxicol Environ Saf. 2024;275:116254.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari A, Yada PK, Zhou L, Lee J, Kim H, Park J et al. Regulation of plasma lipoproteins and atherosclerosis by microRNA-541-3p and transcription components ZNF101 and CASZ1. Arterioscler Thromb Vasc Biol 2023;43(Suppl 1).

  • Cao Y, Tune N, Wang Y, et al. The potential affiliation of TFR1/SLC11A2/GPX4 with ferroptosis in mediating lipid metabolism problems in atherosclerosis. Quantity 28. Combinatorial Chemistry & Excessive Throughput Screening; 2025. pp. 467–77. 3.

  • Sajja A, Li HF, Spinelli KJ, Zahra A, Dunne R, Shah PK, et al. Discordance between commonplace equations for willpower of LDL ldl cholesterol in sufferers with atherosclerosis. J Am Coll Cardiol. 2022;79(6):530–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchini T, Hansen S, Wolf D. ApoB-specific CD4 + T cells in mouse and human atherosclerosis. Cells. 2021;10(2):446.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartley A, Greene M, Caga-Anan M, Makowski D, Kanwar YS, Tirrell DA, et al. Molecular imaging of experimental atherosclerosis utilizing anti-malondialdehyde-modified low-density lipoprotein humanized antibody fragment focused nanoparticles. Eur Coronary heart J. 2022;43(Suppl 2):3040.


    Google Scholar
     

  • Demina EP, Smutova V, Pan X, Yamamoto H, Takahashi Ok, Sialic A et al. Neuraminidases 1 and three set off atherosclerosis by desialylating low-density lipoproteins and growing their uptake by macrophages. J Am Coronary heart Assoc 2021;10(4).

  • Qiao YN, Zou YL, Guo SD. Low-density lipoprotein particles in atherosclerosis. Entrance Physiol. 2022;13:931931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Wu B, Guan Ok, et al. Identification of lipid metabolism associated immune markers in atherosclerosis by way of machine studying and experimental evaluation. Entrance Immunol. 2025;16:1549150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang Y, Zhao Y, et al. Analysis progress and scientific translation potential of coronary atherosclerosis diagnostic markers from a genomic perspective. Genes. 2025;16(1):98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Zhou B, Guo Y, Chen X, Zhu P, Wu Q, et al. SR-A-targeted nanoplatform for sequential photothermal/photodynamic ablation of activated macrophages to alleviate atherosclerosis. ACS Appl Mater Interfaces. 2021;13(25):29349–62.

    Article 
    CAS 

    Google Scholar
     

  • Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Grechko AV, Orekhov AN, et al. Overview of OxLDL and its impression on cardiovascular well being: give attention to atherosclerosis. Entrance Pharmacol. 2021;11:613780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mushenkova NV, Bezsonov EE, Orekhova VA, Popkova TV, Ivanova EA, Wu WK, et al. Recognition of oxidized lipids by macrophages and its position in atherosclerosis improvement. Biomedicines. 2021;9(8):915.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao ZH, Wang YR, Li R, Liu XY, Zhang YT, Hu JT et al. Single nucleotide polymorphisms rs102313, rs118231 and rs201832 of CETP TaqIB gene correlated with lipid metabolism abnormalities and cerebral infarction in sufferers with atherosclerosis. Eur Rev Med Pharmacol Sci 2021;25(23).

  • Chehaitly A, Guihot AL, Proux C, Pouplard L, Villard C, Vandiedonck C, et al. Altered mitochondrial OPA1-related fusion in mouse promotes endothelial cell dysfunction and atherosclerosis. Antioxidants. 2022;11(6):1078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Pan JJ, Yu JJ, Qiu WJ, Feng YJ, Lu YY, et al. DiDang Decoction improves mitochondrial operate and lipid metabolism by way of the HIF-1 signaling pathway to deal with atherosclerosis and hyperlipidemia. J Ethnopharmacol. 2023;308:116289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An C, Solar F, Liu C, Yuan Y, Jin Z, Wang H, et al. IQGAP1 promotes mitochondrial injury and activation of the MtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis resulting in atherosclerosis. Int Immunopharmacol. 2023;123:110795.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poznyak AV, Nikiforov NG, Wu WK, Popkova TV, Orekhova VA, Grechko AV, et al. Autophagy and mitophagy as important parts of atherosclerosis. Cells. 2021;10(2):443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedotova EI, Berezhnov AV, Popov DY, et al. The position of MtDNA mutations in atherosclerosis: the affect of mitochondrial dysfunction on macrophage polarization. Int J Mol Sci. 2025;26(3):1019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campolo J, Canale P, Gazzaniga G, et al. The mitochondrial dysfunction, alongside the modifiable burden of conventional danger components, drives the event of early-onset coronary artery illness. Entrance Cardiovasc Med. 2025;12:1538202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren H, Hu W, Jiang T, et al. Mechanical stress induced mitochondrial dysfunction in cardiovascular ailments: novel mechanisms and therapeutic targets. Biomed Pharmacother. 2024;174:116545.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vendrov AE, Lozhkin A, Hayami T, et al. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype change and atherosclerosis development in ageing. Entrance Immunol. 2024;15:1410832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng X, Solar B, Tang C et al. HMOX1-LDHB interplay promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages throughout superior atherosclerosis. Dev Cell, 2024.

  • Khotina VA, Vinokurov AY, Sinyov VV, et al. Mitochondrial dysfunction related to MtDNA mutation: mitochondrial genome modifying in atherosclerosis analysis. Present Medicinal Chemistry; 2024.

  • Sazonova MA, Sinyov VV, Ryzhkova AI, Galitsyna EV, Khasanova ZD, Zhelankin AV, et al. Some molecular and mobile stress mechanisms related to neurodegenerative ailments and atherosclerosis. Int J Mol Sci. 2021;22(2):699.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho-Encina M, Sales space LK, Redgrave RE, et al. Mobile senescence, mitochondrial dysfunction, and their hyperlink to heart problems. Cells. 2024;13(4):353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noone S, Schubert R, Fichtlscherer S, Rohrer L, Brühl ML, Robenek H, et al. Endothelial dysfunction and atherosclerosis associated miRNA-expression in sufferers with haemophilia. Haemophilia. 2023;29(1):61–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donadini MP, Calcaterra F, Romualdi E, et al. The hyperlink between venous and arterial thrombosis: is there a job for endothelial dysfunction?? Cells. 2025;14(2):144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, et al. Extracellular vesicles as mediators of endothelial dysfunction in cardiovascular ailments. Int J Mol Sci. 2025;26(3):1008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Wang J, Zhang L, Xu H, Li Y, Solar J, et al. Experimental research on assuaging atherosclerosis by way of intervention of mitochondrial calcium transport and calcium-induced membrane permeability transition. J Investig Med. 2021;69(6):1156–60.

    Article 
    PubMed 

    Google Scholar
     

  • Fu J, Deng Y, Ma Y, et al. Nationwide and provincial-level prevalence and danger components of carotid atherosclerosis in Chinese language adults. JAMA Netw Open. 2024;7(1):e2351225–2351225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepin ME, Gupta RM. The position of endothelial cells in atherosclerosis: insights from genetic affiliation research. Am J Pathol. 2024;194(4):499–509.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhang XY, Shi SR, et al. Pure merchandise in atherosclerosis remedy by focusing on PPARs: A evaluation specializing in lipid metabolism and irritation. Entrance Cardiovasc Med. 2024;11:1372055.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao N, Yu X, Zhu X, et al. Diabetes mellitus to accelerated atherosclerosis: shared mobile and molecular mechanisms in glucose and lipid metabolism. J Cardiovasc Transl Res. 2024;17(1):133–52.

    Article 
    PubMed 

    Google Scholar
     

  • Martos-Rodríguez CJ, Albarrán-Juárez J, Morales-Cano D, Vázquez E, Ortiz E, González-Rodríguez A et al. Fibrous caps in atherosclerosis kind by notch-dependent mechanisms frequent to arterial media improvement. Arterioscler Thromb Vasc Biol 2021;41(9).

  • Hartmann F, Gorski DJ, Newman AAC, Tse S, Love C, Liao JK, et al. SMC-derived hyaluronan modulates vascular SMC phenotype in murine atherosclerosis. Circ Res. 2021;129(11):992–05.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong W, Ma J, Lin Y, Chen X, Zhao X, Wei Y, et al. Optimistic affiliation of plasma trimethylamine-N-oxide and atherosclerosis in sufferers with acute coronary syndrome. Cardiovasc Ther. 2022;2022:2484018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian J, Chen L, Li Q, Liu J, Huang Y, Li Z, et al. Relationship between serum FGF21 and vWF expression and carotid atherosclerosis in aged sufferers with hypertension. J Healthc Eng. 2022;2022:6777771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J, Liu X, Qiao L, Zhang R, Wang H, Lin H et al. Affiliation between stent implantation and development of non-target lesions in a rabbit mannequin of atherosclerosis. Circ Cardiovasc Interv 2021;14(11).

  • Li M, Wang ZW, Fang LJ, Tune ZQ, Huang YZ, Zhang BB, et al. Programmed cell demise in atherosclerosis and vascular calcification. Cell Demise Dis. 2022;13(5):467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, et al. Single-cell genomics reveals a novel cell state throughout clean muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Li Z, Liu Y, Jiang Y, Ma Y, Li H, et al. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, et al. Ferroptosis: the potential worth goal in atherosclerosis. Cell Demise Dis. 2021;12(8):782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Zhao Y, Yao H, Wu Q, Shi W, Li Z, et al. DRP1 knockdown and Atorvastatin alleviate ox-LDL-induced vascular endothelial cells harm: DRP1 is a possible goal for stopping atherosclerosis. Exp Cell Res. 2023;429(2):113688.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suh JS, Lee SH, Fouladian Z, Min KH, Shin YC, Kim HS, et al. Rosuvastatin prevents the exacerbation of atherosclerosis in ligature-induced periodontal illness mouse mannequin. Sci Rep. 2020;10(1):6383.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Zhang H, Hu L, Li L, Wei Y, Xie G, et al. Pravastatin attenuates atherosclerosis after myocardial infarction by inhibiting inflammatory Ly6Chigh monocytosis in Apolipoprotein E knockout mice. J Int Med Res. 2020;48(7):0300060520932816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Ok, Tang Z, Tune Z, Wang Z, Yin Y, Qin C, et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading Simvastatin for focused remedy of atherosclerosis. Pharmaceutics. 2022;14(6):1265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang YH, Jiang LY, Wang YC, Luo Y, Zhu Z, He W, et al. Quercetin attenuates atherosclerosis by way of modulating oxidized LDL-induced endothelial mobile senescence. Entrance Pharmacol. 2020;11:512.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Chen J, Han C, Zhang R, Wei Z, Yu L, et al. Theranostics of atherosclerosis by the Indole molecule-templated self-assembly of probucol nanoparticles. J Mater Chem B. 2021;9(20):4134–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali AH, Younis N, Abdallah R, El-Sheikh R, Tawfik AM, Hassan SA, et al. Lipid-lowering therapies for atherosclerosis: Statins, fibrates, Ezetimibe, and PCSK9 monoclonal antibodies. Curr Med Chem. 2021;28(36):7427–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montaigne D, Butruille L, Staels B. PPAR management of metabolism and cardiovascular capabilities. Nat Rev Cardiol. 2021;18(12):809–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo KP, Lim HY, Thiam CH, Chua MWJ, Tan SM, Chan MY et al. Environment friendly aortic lymphatic drainage is important for atherosclerosis regression induced by Ezetimibe. Sci Adv 2020;6(50).

  • Kong N, Xu Q, Cui W, Wang R, Li W, Zhao J et al. PCSK9 inhibitor inclisiran for treating atherosclerosis by way of regulation of endothelial cell pyroptosis. Ann Transl Med 2022;10(22).

  • Garg PK, Guan W, Nomura S, Qian M, Rana JS, Shea S, et al. Associations of plasma omega-3 and omega-6 PUFA ranges with arterial elasticity: the Multi-Ethnic research of atherosclerosis. Eur J Clin Nutr. 2022;76(12):1770–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson GR. The scientific foundation and way forward for lipoprotein apheresis. Ther Apher Dial. 2022;26(1):32–6.

    Article 
    PubMed 

    Google Scholar
     

  • Meyer-Lindemann U, Mauersberger C, Schmidt AC, Müller H, Brühl R, Ghanem R, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular irritation. Entrance Immunol. 2022;13:898690.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spartalis M, Tzima I, Anastasiou A, Spartalis E, Patsouras N, Dimitroulis D, et al. Anti-inflammatory drug mixture remedy for atherosclerosis: Colchicine and Fenofibrate. Curr Med Chem. 2022;29(26):4477–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchaava Ok, Gegeshidze N, Shavdia M, Natsvlishvili T, Shekhovtsov M, Kunchulia M et al. Dyslipidemia correction by mixture of Statin and choline Fenofibrate in diabetic sufferers with multifocal atherosclerosis. Metab Clin Exp 2023;142:S5.

  • Ku EJ, Kim BR, Lee JI, Park HS, Lee SH, Cho YJ, et al. The anti-atherosclerosis impact of Anakinra, a Recombinant human interleukin-1 receptor antagonist, in Apolipoprotein E knockout mice. Int J Mol Sci. 2022;23(9):4906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giles JT, Sattar N, Gabriel S, Ridker PM, Al-Kindi SG, Anderson TJ, et al. Cardiovascular security of Tocilizumab versus etanercept in rheumatoid arthritis: a randomized managed trial. Arthritis Rheumatol. 2020;72(1):31–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svensson EC, Madar A, Campbell CD, van den Berg PR, Wadsworth MHII, Mitton B, et al. TET2-driven clonal hematopoiesis and response to Canakinumab: an exploratory evaluation of the CANTOS randomized scientific trial. JAMA Cardiol. 2022;7(5):521–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palanivelu P, Jagadesan V, Vijayaraghavan R, Rajkumar D, Krishnamoorthy M, Rajakumar S, et al. Terminalia Arjuna bark extract reduces high-fat weight-reduction plan induced cardiac injury in Wistar rats by altering biochemical and histological parameters. Indian J Pharm Educ Res. 2023;57(1):83–93.

    Article 
    CAS 

    Google Scholar
     

  • Susla O, Shved M, Litovkina Z, Fedorova L, Gromova A, Kozlov O et al. Influence of magnesium aspartate and L-carnitine on irritation, insulin resistance, and atherosclerosis development in diabetic Hemodialysis sufferers. Nephrol Dial Transpl 2023;38.

  • Avagimyan A, Fogaci F, Pogosova N, Gotsman I, Shapiro D, Babayeva A et al. Methotrexate & rheumatoid arthritis related atherosclerosis: a story evaluation of multidisciplinary method for danger modification by the worldwide board of consultants. Curr Probl Cardiol. 2023;49(2):102230.

  • Singh L, Sharma S, Xu S, Sahu M, El-Aasar Z, Kumar P, et al. Curcumin as a pure treatment for atherosclerosis: a Pharmacological evaluation. Molecules. 2021;26(13):4036.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Fu H, Xu C, Zhang Y, Li M, Wang Y, et al. Environment friendly remedy of atherosclerosis by dexamethasone acetate and Rapamycin co-loaded mPEG-DSPE calcium phosphate nanoparticles. J Biomed Nanotechnol. 2020;16(6):810–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baziar N, Nasli-Esfahani E, Djafarian Ok, Shab-Bidar S, Mirmiran P, Azadbakht L, et al. The useful results of alpha lipoic acid supplementation on Lp-PLA2 mass and its distribution between HDL and apoB-containing lipoproteins in kind 2 diabetic sufferers: a randomized, double-blind, placebo-controlled trial. Oxid Med Cell Longev. 2020;2020:5850865.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Wang Y, Tan W, Wang S, Liu J, Liu X, et al. A evaluation of Danshen mixed with clopidogrel within the remedy of coronary coronary heart illness. Evid Primarily based Complement Alternat Med. 2019;2019:2721413.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenson RS, Burgess LJ, Ebenbichler CF, Lutz M, Chhajed P, Gaudet D, et al. Evinacumab in sufferers with refractory hypercholesterolemia. N Engl J Med. 2020;383(24):2307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rantasalo V, Laukka D, Nikulainen V, Mattila S, Pienimäki T, Virkki J, et al. Aortic calcification index predicts mortality and cardiovascular occasions in operatively handled sufferers with peripheral artery illness: a potential PURE ASO cohort follow-up research. J Vasc Surg. 2022;76(6):1657–66.

    Article 
    PubMed 

    Google Scholar
     

  • Brugaletta S, Garcia-Garcia HM, Onuma Y, Otsuka F, van Geuns RJ, Serruys PW. Everolimus-eluting ABSORB bioresorbable vascular scaffold: current and future views. Skilled Rev Med Units. 2012;9(4):327–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zeng Y, Zhu X, Li H, Wang H, Zhou L, et al. Important distinction between sirolimus and Paclitaxel nanoparticles in anti-proliferation impact in normoxia and hypoxia: the premise of higher choice of atherosclerosis remedy. Bioact Mater. 2021;6(3):880–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, Qin J, Zhao Q, Zhang W, Li L, Zhu Y, et al. Plaque-targeted Rapamycin spherical nucleic acids for synergistic atherosclerosis remedy. Adv Sci (Weinh). 2022;9(16):2105875.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury MM, Singh Ok, Albaghdadi MS, Saleh Y, Patel R, Sasaki Ok, et al. Paclitaxel drug-coated balloon angioplasty suppresses development and irritation of experimental atherosclerosis in rabbits. J Am Coll Cardiol Primary Transl Sci. 2020;5(7):685–95.


    Google Scholar
     

  • Patti G, Cavallari I, Cesaro A, Bolognese L, Pirozzolo G, Maiolino G, et al. Use of bempedoic acid for LDL ldl cholesterol Decreasing and cardiovascular danger discount: a consensus doc from the Italian research group on atherosclerosis, thrombosis and vascular biology. Vasc Pharmacol. 2023;148:107137.

    Article 
    CAS 

    Google Scholar
     

  • Xuan H, Li Z, Wang J, Du X, Zhang X, Zhao J, et al. Propolis reduces phosphatidylcholine-specific phospholipase C exercise and will increase Annexin a7 stage in oxidized-LDL-stimulated human umbilical vein endothelial cells. Evid Primarily based Complement Alternat Med. 2014;2014:465383.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha NA, East C, Zhang J, Lee CH, Kwan G, Loong C, et al. ApoCIII as a cardiovascular danger issue and modulation by the novel lipid-lowering agent volanesorsen. Curr Atheroscler Rep. 2017;19:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Ridker PM, From. RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab show efficient for cardiovascular occasion discount? 2021.

  • Vong CT, Chen Y, Chen Z, Chen M, Li S, Li Y, et al. Classical prescription Dachuanxiong components delays nitroglycerin-induced ache response in migraine mice by way of lowering endothelin-1 stage and regulating fatty acid biosynthesis. J Ethnopharmacol. 2022;288:114992.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Li Y, Yuan X, Zhao W, Gao Y, Zhu Y, et al. The efficient constituent puerarin, from pueraria Lobata, inhibits the proliferation and irritation of vascular clean muscle in atherosclerosis by way of the miR-29b-3p/IGF1 pathway. Pharm Biol. 2023;61(1):1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Huo X, Raynald, Wang A, Chen S, Wang Y, Wang S, et al. Security and efficacy of Tirofiban for acute ischemic stroke sufferers with giant artery atherosclerosis stroke etiology present process endovascular remedy. Entrance Neurol. 2021;12:630301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiarito M, Sanz-Sánchez J, Cannata F, Bouzón C, Pineda AM, Cao D, et al. Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in sufferers with established atherosclerosis: a scientific evaluation and meta-analysis. Lancet. 2020;395(10235):1487–95.

    Article 
    PubMed 

    Google Scholar
     

  • Cainzos-Achirica M, Miedema MD, McEvoy JW, Duprez DA, Greenland P, Cushman M, et al. Coronary artery calcium for customized allocation of aspirin in main prevention of heart problems in 2019: the MESA research (Multi-Ethnic research of Atherosclerosis). Circulation. 2020;141(19):1541–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han YM, Lee YJ, Jang YN, Choi H, Kim HY, Jeong SH, et al. Aspirin improves nonalcoholic fatty liver illness and atherosclerosis by way of regulation of the PPARδ-AMPK-PGC-1α pathway in dyslipidemic circumstances. Biomed Res Int. 2020;2020:7806860.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Shi Q, Hu Y, Wang Y, Zhang Q, Tune W, et al. Silibinin augments the impact of clopidogrel on atherosclerosis in diabetic ApoE deficiency mice. Clin Hemorheol Microcirc. 2022;80(4):353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amarenco P, Denison H, Evans SR, Himmelmann A, Cortese F, Kennedy KF, et al. Ticagrelor added to aspirin in acute nonsevere ischemic stroke or transient ischemic assault of atherosclerotic origin. Stroke. 2020;51(12):3504–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitazono T, Toyoda Ok, Kitagawa Ok, Inoue T, Nagayama M, Koga M, et al. Efficacy and security of Prasugrel by stroke subtype: a sub-analysis of the PRASTRO-I randomized managed trial. J Atheroscler Thromb. 2021;28(2):169–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malladi N, Alam MJ, Maulik SK, Saha S, Giri SK, Bandyopadhyay D, et al. The position of platelets in non-alcoholic fatty liver illness: from pathophysiology to therapeutics. Prostaglandins Different Lipid Mediat. 2023;169:106766.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan H, Huang T, Yang P, Wang Y, Liu Z, Zhang Q, et al. Efficacy and security of cilostazol for atherosclerosis: A Meta-analysis of randomized managed trials. J Cardiovasc Pharmacol. 2022;79(3):390.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Q, He N, Wang Z, Zhang T, Wang Y, Gao L, et al. Practical roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J Ginseng Res. 2021;45(1):22–31.

    Article 
    PubMed 

    Google Scholar
     

  • Chen W, Guo S, Li X, Huang L, Wang Z, Liu W, et al. The regulated profile of noncoding RNAs related to irritation by Tanshinone IIA on atherosclerosis. J Leukoc Biol. 2020;108(1):243–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu L, Gao R, Tune X, Zhao D, Zhou Q, Liang H, et al. Cardio-protective and Anti-atherosclerosis impact of Crocetin on vitamin D3 and HFD-induced atherosclerosis in rats. J Oleo Sci. 2021;70(10):1447–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Bai Y, Bai Y, Liu H, Chen L, Tune H, et al. Pharmacokinetics of caffeic acid, ferulic acid, Formononetin, Cryptotanshinone, and Tanshinone IIA after oral administration of Naoxintong capsule in rat by HPLC-MS/MS. Evid Primarily based Complement Alternat Med. 2017;2017:9057238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedacca CD, Campbell TW, Vivid JM, Camus A, Stoskopf MK, Clancy MM, et al. Continual Cor pulmonale secondary to pulmonary atherosclerosis in an African gray Parrot. J Am Vet Med Assoc. 2009;234(8):1055–59.

    Article 
    PubMed 

    Google Scholar
     

  • Sarfo FS, Voeks J, Adamu S, Akpalu A, Overweight V, Ohene-Frempong Ok et al. A cardiovascular polypill for secondary stroke prevention in a tertiary centre in Ghana (SMAART): a part 2 randomized scientific trial. Lancet Glob Well being 2023;11(10).

  • Pàmies A, Llop D, Ibarretxe D, Posadas M, Soler MJ, Sánchez-Martínez M, et al. Angiopoietin-2, vascular endothelial progress issue household, and heparin binding endothelial progress issue are related to subclinical atherosclerosis in rheumatoid arthritis. Comput Struct Biotechnol J. 2024;23:1680–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JS, Koo J, Shin DI, Jeon SB, Kim BJ, Yoon YH, et al. Apixaban for secondary stroke prevention: coexistent cerebral atherosclerosis Might improve recurrent strokes. J Stroke. 2022;24(1):118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran CS, Seto SW, Krishna SM, Tan JT, Moxon JV, Rowbotham SE, et al. Parenteral administration of issue Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci Rep. 2017;7(1):43079.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanda T, Yoshimura M, Hyodo Ok, Nomura M, Mori S, Hayashi M, et al. Results of long-term thrombin Inhibition (dabigatran etexilate) on spontaneous thrombolytic exercise through the development of atherosclerosis in ApoE–/––LDLR–/– double-knockout mice. Korean Circ J. 2020;50(9):804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Z, Jiang Y, Liu Z, et al. Selenopeptide nanomedicine ameliorates atherosclerosis by lowering monocyte adhesions and inflammations. Nano Res. 2024;17(7):6332–41.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Chen J, Lu Y, et al. Codelivery of twin gases with Steel-Natural supramolecular Cage‐Primarily based Microenvironment‐Responsive nanomedicine for atherosclerosis remedy. Small. 2024;20(40):2402673.

    Article 
    CAS 

    Google Scholar
     

  • Tang C, Wang H, Guo L, et al. Multifunctional nanomedicine for focused atherosclerosis remedy: activating plaque clearance cascade and suppressing irritation. ACS nano; 2025.

  • Chen S, Zhang W, Tang C, et al. Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic remedy of atherosclerosis by mitigating inflammatory storms and selling ldl cholesterol efflux. J Nanobiotechnol. 2024;22(1):664.

    Article 
    CAS 

    Google Scholar
     

  • Wan X, Zhang H, Tian J et al. The chains of ferroptosis work together in the entire development of atherosclerosis. J Inflamm Res 2023;16:4575–92.

  • Peng Y, Feng W, Huang H, et al. Macrophage-targeting antisenescence nanomedicine permits in-Situ NO induction for gaseous and antioxidative atherosclerosis intervention. Bioactive Mater. 2025;48:294–312.

    Article 
    CAS 

    Google Scholar
     

  • Wong YS, Czarny B, Venkatraman SS. Precision nanomedicine in atherosclerosis remedy: how Far are we from actuality? Prec Nanomed. 2019;2:230–44.

    Article 

    Google Scholar
     

  • Hejabi F, Abbaszadeh MS, Taji S, et al. Nanocarriers: A novel technique for the supply of CRISPR/Cas programs. Entrance Chem. 2022;10:957572.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin M, Chen X, Zheng L et al. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis by way of the NRF2/SLC7A11/GPX4 pathway. Arch Biochem Biophys. 2025;765:110316.

  • Zhu L, Zhong Y, Yan M, et al. Macrophage Membrane-Encapsulated Dopamine-Modified Poly cyclodextrin multifunctional biomimetic nanoparticles for atherosclerosis remedy. ACS Appl Mater Interfaces. 2024;16(25):32027–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Wang Y, Zhang Y, et al. Drug-Loaded mesoporous polydopamine nanoparticles in Chitosan hydrogels allow myocardial infarction restore by way of ROS scavenging and Inhibition of apoptosis. ACS Appl Mater Interfaces. 2024;16(45):61551–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuang ST. Tailor-made designs and purposes of soppy nanomaterials for advancing chimeric antigen receptor macrophage engineering[D]. Rutgers College-Faculty of Graduate Research; 2024.

  • Wang J, Lu B, Yin G, et al. Design and fabrication of environmentally responsive nanoparticles for the prognosis and remedy of atherosclerosis. ACS Biomaterials Sci Eng. 2024;10(3):1190–206.

    Article 
    CAS 

    Google Scholar
     

  • Aili T, Zong J, Zhou Y, et al. Latest advances of self-assembled nanoparticles within the prognosis and remedy of atherosclerosis. Theranostics. 2024;14(19):7505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Gu J, Xiao Q, et al. Liposomal codelivery of irritation inhibitor and collagen protector to the plaque for efficient anti-atherosclerosis. Chin Chem Lett. 2023;34(01):107483.

    Article 
    CAS 

    Google Scholar
     

  • Zhen J, Li X, Yu H, et al. Excessive-density lipoprotein mimetic nano-therapeutics focusing on monocytes and macrophages for improved cardiovascular care: a complete evaluation. J Nanobiotechnol. 2024;22(1):263.

    Article 

    Google Scholar
     

  • Mallén A, Narváez-Narváez DA, Pujol MD, et al. Improvement of cationic strong lipid nanoparticles incorporating cholesteryl-9-carboxynonanoate (9CCN) for supply of antagomirs to macrophages. Eur J Pharm Biopharm. 2024;197:114238.

    Article 
    PubMed 

    Google Scholar
     

  • Solar X, Jia X, Tan Z, et al. Oral nanoformulations in cardiovascular drugs: advances in atherosclerosis remedy. Prescription drugs. 2024;17(7):919.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Jiang Z, Yang X, et al. Engineering nanoplatforms for theranostics of atherosclerotic plaques. Adv Healthc Mater. 2024;13(16):2303612.

    Article 
    CAS 

    Google Scholar
     

  • Tong J, Wang Z, Zhang J, et al. Superior purposes of nanomaterials in atherosclerosis prognosis and remedy: challenges and future prospects. ACS Appl Mater Interfaces. 2024;16(43):58072–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng W, Zhou Y, Wan Q, et al. Nano-enzyme hydrogels for cartilage restore effectiveness primarily based on ternary technique remedy. J Mater Chem B. 2024;12(25):6242–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin H, Lu W, Zhang Y, et al. Functionalized periodic mesoporous silica nanoparticles for inhibiting the development of atherosclerosis by focusing on low-density lipoprotein ldl cholesterol. Pharmaceutics. 2024;16(1):74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Xie R, Yu T. Photodynamic remedy for atherosclerosis: previous, current, and future. Pharmaceutics. 2024;16(6):729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana F, Molinaro G, Moroni S, et al. Biomimetic Platelet-Cloaked nanoparticles for the supply of Anti‐Inflammatory Curcumin within the remedy of atherosclerosis. Adv Healthc Mater. 2024;13(15):2302074.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou L, Zhang Y, Cheraga N, et al. M2 macrophage Membrane-Camouflaged Fe3O4‐Cy7 nanoparticles with lowered immunogenicity for focused NIR/MR imaging of atherosclerosis. Small. 2024;20(8):2304110.

    Article 
    CAS 

    Google Scholar
     

  • Tariq H, Bukhari SZ, An R, et al. Stem cell-derived exosome supply programs for treating atherosclerosis: the brand new frontier of stem cell remedy. Mater In the present day Bio. 2025;30:101440.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu B, Boakye-Yiadom KO, Yu W, et al. Nanomedicine approaches for superior prognosis and remedy of atherosclerosis and associated ischemic ailments. Adv Healthc Mater. 2020;9(16):2000336.

    Article 
    CAS 

    Google Scholar
     

  • Cui H, Soga Ok, Tamehiro N, Okazaki S, Ishikawa N, Morimoto H, et al. Statins repress needle-like carbon nanotube- or ldl cholesterol crystal-stimulated IL-1β manufacturing by inhibiting the uptake of crystals by macrophages. Biochem Pharmacol. 2021;188:114580.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Huang H, Chen Y, et al. Nanomedicine for prognosis and remedy of atherosclerosis. Adv Sci. 2023;10(36):2304294.

    Article 
    CAS 

    Google Scholar
     

  • Woo KS, Yip TWC, Chook P, Lau E, Kwok TC, Chiu KH, et al. Nutritional vitamins B-12 and C supplementation improves arterial reactivity and construction in passive people who smoke: implication in prevention of smoking-related atherosclerosis. J Nutr Well being Growing old. 2021;25:248–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan W. Software of immunomodulatory biomaterials for cardiovascular restore. 2024.

  • Bouisset F, Sia J, Mizukami T, et al. Titanium-Nitride-Oxide–Coated vs Everolimus-Eluting stents in acute coronary syndrome: 5-12 months scientific outcomes of the TIDES-ACS randomized scientific trial. JAMA Cardiol. 2023;8(7):703–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Solar H, Wang Y, et al. Nb2CTx MXene coating with Inhibition of oxidative stress ready by Marangoni impact for Hemodialysis remedy. Chem Eng J. 2024;485:150047.

    Article 
    CAS 

    Google Scholar
     

  • Luo X, Fu H, Xu C, Liang C, Li M, Wang Y, et al. Environment friendly remedy of atherosclerosis by dexamethasone acetate and Rapamycin co-loaded mPEG-DSPE calcium phosphate nanoparticles. J Biomed Nanotechnol. 2020;16(6):810–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zălar DM, Pop C, Buzdugan E, Ionescu A, Dobrescu M, Stan M, et al. Pharmacological results of methotrexate and Infliximab in a rats mannequin of diet-induced dyslipidemia and beta-3 overexpression on endothelial cells. J Clin Med. 2021;10(14):3143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku EJ, Kim BR, Lee JI, Lee KH, Cho YJ, Kang DR, et al. The anti-atherosclerosis impact of Anakinra, a Recombinant human interleukin-1 receptor antagonist, in Apolipoprotein E knockout mice. Int J Mol Sci. 2022;23(9):4906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Kumar S, Kang DW, Kim CW, Lee IH, Kim JY, et al. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis remedy. ACS Nano. 2020;14(6):6519–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozaykut P, Ekren R, Sezerman OU, Durakoglugil ME, Kazan D. Excessive-throughput profiling reveals perturbation of Endoplasmic reticulum stress-related genes in atherosclerosis induced by high-cholesterol weight-reduction plan and the protecting position of vitamin E. BioFactors. 2020;46(4):653–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R, et al. New insights into Immunomodulation by way of overexpressing lipoic acid synthase as a therapeutic potential to scale back atherosclerosis. Vasc Pharmacol. 2020;133:106777.

    Article 

    Google Scholar
     

  • Shen J, Li X, Zhang X, Li Z, Abulaiti G, Liu Y, et al. Results of Xinjiang wild Cherry Plum (Prunus divaricata Ledeb) anthocyanin-rich extract on the plasma metabolome of atherosclerotic apoE-deficient mice fed a high-fat weight-reduction plan. Entrance Nutr. 2022;9:923699.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, et al. Pure flavonoids derived from fruits are potential brokers in opposition to atherosclerosis. Entrance Nutr. 2022;9:862277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Windler E, Beil FU, Berthold HK, Scharnagl H, Rottbauer W, Nauck M, et al. Phytosterols and cardiovascular danger evaluated in opposition to the background of phytosterolemia instances—a German skilled panel assertion. Vitamins. 2023;15(4):828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singla B, Lin HP, Ahn WM, et al. Lack of myeloid cell-specific SIRPα, however not CD47, attenuates irritation and suppresses atherosclerosis. Cardiovascular Res. 2022;118(15):3097–111.

    Article 
    CAS 

    Google Scholar
     

  • Tao W, Yurdagul A Jr, Kong N, et al. SiRNA nanoparticles focusing on CaMKIIγ in lesional macrophages enhance atherosclerotic plaque stability in mice. Sci Transl Med. 2020;12(553):eaay1063.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Liu R, Liu C, et al. A pH/ROS dual-responsive and focusing on nanotherapy for vascular inflammatory ailments. Biomaterials. 2020;230:119605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Fan L, Xu Y. Efficacy of Metoprolol plus Atorvastatin for carotid atherosclerosis and its affect on carotid intima-media thickness and homocysteine stage. Am J Transl Res. 2022;14(8):5511.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Q, Fan Q, Han X, Dong X, Wang Y, Chen Q, et al. Platelet-derived extracellular vesicles to focus on plaque irritation for efficient anti-atherosclerotic remedy. J Management Launch. 2021;329:445–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallén A, Rodriguez-Urquia R, Alvarez R, Martos-Rodriguez A, Quesada M, Dominguez E, et al. Intercourse variations in glomerular lesions, in atherosclerosis development, and within the response to angiotensin-converting enzyme inhibitors within the ApoE–/– mice mannequin. Int J Mol Sci. 2023;24(17):13442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Zhang Y, Ma X, Jia S, Fang Y, Wang Y, et al. Synthesis and characterization of fucoidan-chitosan nanoparticles focusing on P-selectin for efficient atherosclerosis remedy. Oxid Med Cell Longev. 2022;2022:8006642.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng H, Konopka CJ, Prabhu S, Sharma B, Duong A, Weinstock D, et al. Dextran-mimetic quantum Dots for multimodal macrophage imaging in vivo, ex vivo, and in situ. ACS Nano. 2022;16(2):1999–2012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, He H, Mao Y et al. Advances in atherosclerosis theranostics Harnessing iron oxide-based nanoparticles. Adv Sci 2024;2308298.

  • Zhang Y, Ye J, Hosseini-Nassab N, et al. Macrophage-targeted single-walled carbon nanotubes stimulate phagocytosis by way of pH-dependent drug launch. Nano Res. 2021;14:762–69.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Rotllan N, Canfrán-Duque A, et al. Focused suppression of miRNA-33 utilizing pHLIP improves atherosclerosis regression. Circul Res. 2022;131(1):77–90.

    Article 
    CAS 

    Google Scholar
     

  • Dimitroglou Y, Aggeli C, Theofilis P, Tousoulis D, Stellos Ok, Andreadou I, et al. Novel anti-inflammatory therapies in coronary artery illness and acute coronary syndromes. Life (Basel). 2023;13(8):1669.

    CAS 
    PubMed 

    Google Scholar
     

  • Poels Ok, Schreurs M, Jansen M, van der Veken C, Jorens P, De Meyer GRY, et al. Immuno-PET imaging of atherosclerotic plaques with [89Zr] Zr-anti-CD40 mAb—proof of idea. Biology (Basel). 2022;11(3):408.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Huang W, Meng Y, Xu L, Cheng Y, Li F, et al. T1-weighted MRI of focusing on atherosclerotic plaque primarily based on CD40 expression on engulfed USPIO’s cell floor. Biomed Mater. 2024;19(2):025019.

    Article 
    CAS 

    Google Scholar
     

  • Hu Z, Fang X, Sheng B, Zheng Y, Tao H, Shen Y, et al. Melatonin inhibits macrophage infiltration and promotes plaque stabilization by upregulating anti-inflammatory HGF/c-Met system within the atherosclerotic Rabbit: USPIO-enhanced MRI evaluation. Vasc Pharmacol. 2020;127:106659.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Xu W, Gao P, Zheng Y, Solar S, Huang X, et al. Building of twin nanomedicines for the imaging and alleviation of atherosclerosis. Artif Cells Nanomed Biotechnol. 2020;48(1):169–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farjadian F, Ghasemi S, Akbarian M, et al. Bodily stimulus-responsive nanoparticles for remedy and prognosis. Entrance Chem. 2022;10:952675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng WC, Chan W, Dart A, et al. Novel therapeutic targets and rising remedies for atherosclerotic heart problems. Eur Coronary heart Journal-Cardiovascular Pharmacotherapy. 2024;10(1):53–67.

    Article 

    Google Scholar
     

  • Ossoli A, Strazzella A, Rottoli D, et al. CER-001 ameliorates lipid profile and kidney illness in a mouse mannequin of Familial LCAT deficiency. Metabolism. 2021;116:154464.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Centurion F, Chen R, et al. Intravascular imaging of atherosclerosis through the use of engineered nanoparticles. Biosensors. 2023;13(3):319.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingwell BA, Nicholls SJ, Velkoska E, et al. Antiatherosclerotic results of CSL112 mediated by enhanced ldl cholesterol efflux capability. J Am Coronary heart Affiliation. 2022;11(8):e024754.

    Article 
    CAS 

    Google Scholar
     

  • Pecoraro F, Dinoto E, Pakeliani D, Amato B, Assisi A, Bajardi G, et al. Efficacy and one-year outcomes of Luminor® paclitaxel-coated drug-eluting balloon within the remedy of popliteal artery atherosclerosis lesions. Ann Vasc Surg. 2021;76:370–77.

    Article 
    PubMed 

    Google Scholar
     

  • Di Francesco V, Di Francesco M, Palomba R, Gori M, Gallo G, Vannini E, et al. In the direction of potent anti-inflammatory therapies in atherosclerosis: the case of methotrexate and Colchicine mixture into compartmentalized liposomes. J Drug Deliv Sci Technol. 2023;80:104179.

    Article 

    Google Scholar
     

  • Li T, Safitri M, Zhang Ok, Wong J, Ma C, Zhen Y, et al. Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE–/–mice. Atherosclerosis. 2020;310:64–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nettersheim FS, De Vore L, Winkels H. Vaccination in atherosclerosis. Cells. 2020;9(12):2560.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ait-Oufella H, Lavillegrand JR, Tedgui A. Regulatory T cell-enhancing therapies to deal with atherosclerosis. Cells. 2021;10(4):723.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Wang X, Nie L, Zhao Y, Zhang H, Wang J, et al. The rising position of Th1 cells in atherosclerosis and its implications for remedy. Entrance Immunol. 2023;13:1079668.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scisciola L, Cataldo V, Taktaz F, et al. Anti-inflammatory position of SGLT2 inhibitors as a part of their anti-atherosclerotic exercise: knowledge from fundamental science and scientific trials. Entrance Cardiovasc Med. 2022;9:1008922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Fan X, Bai B, et al. Pyroptosis is a crucial immune-inflammatory response concerned in atherosclerosis. Pharmacol Res. 2021;165:105447.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambaren Ok, Trac N, Fehrenbach D et al. T Cell-Concentrating on Nanotherapies for Atherosclerosis. Bioconjugate Chemistry, 2025.

  • Mulholland M, Jakobsson G, Lei Y, et al. IL-2Rβγ signalling in lymphocytes promotes systemic irritation and reduces plasma ldl cholesterol in atherosclerotic mice. Atherosclerosis. 2021;326:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Wang W, Li Q, et al. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: current standing and future instructions. Int J Sensible Nano Mater. 2024;15(3):610–51.

    Article 

    Google Scholar
     

  • Miranda-Prieto D, Alperi-Lopez M, Perez-Alvarez AI et al. Age-associated B-cells are expanded in early arthritis linked to atherosclerosis and immune circuits-a potential position as a biomarker for danger stratification. MedRxiv. 2025. https://doi.org/10.1101/2025.01.14.25320531.

  • Bhattacharya P, Kanagasooriyan R, Subramanian M. Tackling irritation in atherosclerosis: are we there but and what Lies past? Curr Opin Pharmacol. 2022;66:102283.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vos WG, Van Os BW, Den Toom M, et al. T cell particular deletion of Casitas B lineage lymphoma-b reduces atherosclerosis, however will increase plaque T cell infiltration and systemic T cell activation. Entrance Immunol. 2024;15:1297893.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milward KF, Wooden KJ, Hester J. Enhancing human regulatory T cells in vitro for cell remedy purposes. Immunol Lett. 2017;190:139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lotfy H, Moaaz M, Moaaz M. The novel position of IL-37 to reinforce the anti-inflammatory response of regulatory T cells in sufferers with peripheral atherosclerosis. Vascular. 2020;28(5):629–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules concerned in its activation and Inhibition. Adv Protein Chem Struct Biol. 2020;120:85–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlöder J, Shahneh F, Schneider FJ, Völkner T, Hoßfeld C, Jungmann A, et al. Boosting regulatory T cell operate for the remedy of autoimmune ailments–That’s solely half the battle! Entrance Immunol. 2022;13:973813.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones PW, Mallat Z, Nus M, Arteriosclerosis. Thromb Vascular Biology. 2024;44(7):1502–11.

    Article 
    CAS 

    Google Scholar
     

  • O’Brien JW, Case A, Kemper C, et al. Therapeutic avenues to modulate B-cell operate in sufferers with heart problems. Arterioscler Thromb Vasc Biol. 2024;44(7):1512–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattarabanjird T, Li C, McNamara C. B cells in atherosclerosis: mechanisms and potential scientific purposes. J Am Coll Cardiol Primary Transl Sci. 2021;6(6):546–63.


    Google Scholar
     

  • Obare LM, Bonami RH, Doran AC, et al. B cells and atherosclerosis: A HIV perspective. J Cell Physiol. 2024;239(6):e31270.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nevado RM, Hamczyk MR, Gonzalo P, Egido J, Andres V. Untimely vascular ageing with options of plaque vulnerability in an Atheroprone mouse mannequin of Hutchinson–Gilford Progeria syndrome with Ldlr deficiency. Cells. 2020;9(10):2252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee MKS, Kraakman MJ, Dragoljevic D, Weinstock A, Broer J, Shiri-Sverdlov R, et al. Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes. Arterioscler Thromb Vasc Biol. 2021;41(3):1167–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blincoe A, Labrosse R, Abraham RS. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J Immunol Strategies. 2022;511:113385.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma J, Wang X, Jia Y, et al. The roles of B cells in cardiovascular ailments. Mol Immunol. 2024;171:36–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison J, Newland SA, Jiang W, et al. Marginal zone B cells produce ‘pure’atheroprotective IgM antibodies in a T cell–dependent method. Cardiovascular Res. 2024;120(3):318–28.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Gao C, Chen H et al. C-reactive protein: an essential inflammatory marker of coronary atherosclerotic illness. Angiology. 2024. https://doi.org/10.1177/00033197241273360.

  • Zhao Z, Wang X, Zhang R, Zhang Y, Cheng M, Xu Y, et al. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway by way of NLRP3 inflammasomes in endothelial cells. Growing old. 2021;13(8):11363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Melnichenko AA, Wetzker R, Laufer SA, Litvin Y, Orekhov AN, et al. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines. 2020;8(7):205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tall AR, Bornfeldt KE. Inflammasomes and atherosclerosis: a blended image. Circ Res. 2023;132(11):1505–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stitham J, Rodriguez-Velez A, Zhang X, Aftab BT, Amin S, Srivastava A, et al. Inflammasomes: a preclinical evaluation of focusing on in atherosclerosis. Skilled Opin Ther Targets. 2020;24(9):825–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Y, Yan R, Chen X, Xie Z, Chen D, Li H, et al. Paeonol suppresses the impact of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem. 2020;475:127–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Li Y, Ran X, Wang D, Huang J, Fan Z, et al. Mettl14 mediates the inflammatory response of macrophages in atherosclerosis by way of the NF-κB/IL-6 signaling pathway. Cell Mol Life Sci. 2022;79(6):311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovanen PT. Inhibition of chymase-dependent manufacturing of IL-1β by clean muscle cells within the fibrous caps of human atherosclerotic plaques: an inexpensive method to forestall cap rupture? Atherosclerosis. 2024;390:117412.

  • Luo P, Shi W, Wang Y, Zhong H, Lin D, Liang D, et al. Raloxifene inhibits IL-6/STAT3 signaling pathway and protects in opposition to high-fat-induced atherosclerosis in ApoE–/– mice. Life Sci. 2020;261:118304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edsfeldt A, Gonçalves I, Vigren I, Hedblad B, Gabrielsen A, Melander O, et al. Circulating soluble IL-6 receptor associates with plaque irritation however not with atherosclerosis severity and cardiovascular danger. Vasc Pharmacol. 2023;152:107214.

    Article 
    CAS 

    Google Scholar
     

  • Rai MK, Jain N, Mohindra N, et al. Scientific and serological associations of subclinical atherosclerosis in spondyloarthropathy. Indian J Rheumatol. 2024;19(1):25–32.

    Article 

    Google Scholar
     

  • Cyr Y, Bozal FK, Barcia Durán JG et al. The IRG1–itaconate axis protects from cholesterol-induced irritation and atherosclerosis. Proceedings of the Nationwide Academy of Sciences, 2024;121(15): e2400675121.

  • Monaco C, Dib L, Atheroimmunology. Retaining the immune system in atherosclerosis in examine. Nat Evaluations Cardiol. 2024;21(11):737–8.

    Article 

    Google Scholar
     

  • Mao J, Chen Y, Zong Q, et al. Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation by way of the Olfr2 signaling pathway in vitro and in vivo. Entrance Immunol. 2024;15:1364161.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia D, Zhao M, Zhang X, et al. Transcriptomic evaluation reveals the crucial position of chemokine signaling within the anti-atherosclerosis impact of Xuefu Zhuyu Decoction. J Ethnopharmacol. 2024;332:118245.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao M, Tang M, Ho W, Chen J, Zou Z, Jiang Z, et al. Modulating plaque irritation by way of focused mRNA nanoparticles for the remedy of atherosclerosis. ACS Nano. 2023;17(18):17721–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishore R, Magadum A. Cell-specific mRNA therapeutics for cardiovascular ailments and regeneration. J Cardiovasc Dev Dis. 2024;11(2):38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kettunen S, Ruotsalainen AK, Ylä-Herttuala S. RNA interference-based therapies for the management of atherosclerosis danger components. Curr Opin Cardiol. 2022;37(4):364–71.

    Article 
    PubMed 

    Google Scholar
     

  • Bu T, Li Z, Hou Y, Ma C, Wang Y, Li H, et al. Exosome-mediated supply of inflammation-responsive IL-10 mRNA for managed atherosclerosis remedy. Theranostics. 2021;11(20):9988–01.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bejar N, Tat TT, Kiss DL. RNA therapeutics: the following era of medication for cardiovascular ailments. Curr Atheroscler Rep. 2022;24(5):307–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim TK, Jeon S, Park S, Lee SH, Han YM, Kim S, et al. 2′–5′ oligoadenylate synthetase-like 1 (OASL1) protects in opposition to atherosclerosis by sustaining endothelial nitric oxide synthase mRNA stability. Nat Commun. 2022;13(1):6647.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khair M, Khair M, Vangaveti VN et al. The position of the NLRP3 inflammasome in atherosclerotic illness: systematic evaluation and meta-analysis. J Cardiol. 2024;84(1):14–21.

  • Tang Y, Li Z, Yang H, Zou H, Zhang X, Shen Q, et al. YB1 dephosphorylation attenuates atherosclerosis by selling CCL2 mRNA decay. Entrance Cardiovasc Med. 2022;9:945557.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Luo G, Tang Q, Jiang Y, Wang Y, Su Z, et al. Methyltransferase-like 14 Silencing relieves the event of atherosclerosis by way of m6A modification of p65 mRNA. Bioengineered. 2022;13(5):11832–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Wu D, Solar Y, Liu L, Zhang X, Liu Z, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis improvement by attenuating irritation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ismailani US, Buchler A, MacMullin N, Lam L, Wang Y, Wilson S, et al. Synthesis and analysis of [11 C] MCC950 for imaging NLRP3-mediated irritation in atherosclerosis. Mol Pharm. 2023;20(3):1709–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orecchioni M, Kobiyama Ok, Winkels H, Ghosh A, Künzel S, Hoeksema M, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 manufacturing. Science. 2022;375(6577):214–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma A, Choi JSY, Stefanovic N, Colakovic S, Nelson KA, Lavin D, et al. Particular NLRP3 Inhibition protects in opposition to diabetes-associated atherosclerosis. Diabetes. 2021;70(3):772–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lunding LP, Skouras DB, Vock C, Steinmetz T, Becker M, Holzmann M et al. The NLRP3 Inflammasome Inhibitor OLT1177® Ameliorates Experimental Allergic Bronchial asthma in Mice. J Immunol. 2022;208(1 Suppl):109.02-109.02.

  • Fidler TP, Xue C, Yalcinkaya M, Sweeney TE, Olesen SW, Bar-Joseph Z, et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature. 2021;592(7853):296–01.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Wu D, Solar Y, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis improvement by attenuating irritation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic ailments. J Atheroscler Thromb. 2019;26(3):216–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Wu WK, Melnichenko AA, Orekhov AN, Sukhorukov VN, Grechko AV, et al. Signaling pathways and key genes concerned in regulation of froth cell formation in atherosclerosis. Cells. 2020;9(3):584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang X, Li Y, Wang W, Li X, Wang C, Zhou G, et al. Nuclear issue erythroid 2 associated issue 2 activator JC-5411 inhibits atherosclerosis by way of suppression of irritation and regulation of lipid metabolism. Entrance Pharmacol. 2020;11:532568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Testa G, Staurenghi E, Giannelli S, Frediani S, Pellegrino M, Ferrara D, et al. Up-regulation of PCSK6 by lipid oxidation merchandise: A attainable position in atherosclerosis. Biochimie. 2021;181:191–03.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan AA, Gupta V, Mahapatra NR. Key regulatory MiRNAs in lipid homeostasis: implications for cardiometabolic ailments and improvement of novel therapeutics. Drug Discov In the present day. 2022;27(8):2170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang L, Ren P, Wang H, Liu M, Lu Z, et al. Qing-Xue-Xiao-Zhi components attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response by way of TLR4/MyD88/NF-κB pathway regulation. Phytomedicine. 2021;93:153812.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du Y, Zhang M, Li Y, Yang Y, Zhang Q, Wang H, et al. Tilianin improves lipid profile and alleviates atherosclerosis in ApoE–/– mice by way of up-regulation of SREBP2-mediated LDLR expression. Phytomedicine. 2023;109:154577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv F, Fang H, Huang L, Wu J, Liu Y, Zhang S et al. Curcumin outfitted Nanozyme-Like Steel– Natural framework platform for the focused atherosclerosis remedy with lipid regulation and enhanced magnetic resonance imaging functionality. Adv Sci. 2024;11(26):2309062.

  • Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, et al. Position of prostaglandin E2 in macrophage polarization: insights into atherosclerosis. Biochem Pharmacol. 2023;207:115357.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massaro M, Scoditti E, Calabriso N, Cigliano L, Storelli C, De Caterina R, et al. Chapter 62 – Vitamins and gene expression in heart problems. In: Ideas of nutrigenetics and nutrigenomics. 2020. p. 469–81.https://doi.org/10.1016/B978-0-12-804572-5.00062-8

  • Li H, Bai L, Qin Q, Feng BL, Zhang L, Wei FY, et al. [Research progress on anti-atherosclerosis effect and mechanism of flavonoids compounds mediated by macrophages]. Zhongguo Zhong Yao Za Zhi. 2020;45(12):2827–34.

    PubMed 

    Google Scholar
     

  • Bolea G, Philouze C, Dubois M, Risdon S, Humberclaude A, Ginies C et al. Digestive n-6 lipid oxidation, a key set off of vascular dysfunction and atherosclerosis within the Western weight-reduction plan: protecting results of Apple polyphenols. Mol Nutr Meals Res2021;65(6).

  • Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 involvement in atherosclerosis associated oxidative stress. Antioxid (Basel). 2021;10(9):1463.

    Article 

    Google Scholar
     

  • Leong XF. Lipid oxidation merchandise on Irritation-Mediated hypertension and atherosclerosis: A mini evaluation. Entrance Nutr. 2021;8:717740.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Hadri Ok, Smith R, Duplus E, El Amri C, Irritation. Oxidative stress, senescence in atherosclerosis: Thioredoxine-1 as an rising therapeutic goal. Int J Mol Sci. 2021;23(1):77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batty M, Bennett MR, Yu E. The position of oxidative stress in atherosclerosis. Cells. 2022;11(23):3843.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Primarily based antioxidant methods for the remedy of oxidative stress ailments. Biomimetics (Basel). 2024;9(1):23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R et al. New insights into Immunomodulation by way of overexpressing lipoic acid synthase as a therapeutic potential to scale back atherosclerosis. Vascul Pharmacol. 2020;133:106777.

  • Violi F, Nocella C, Loffredo L, Carnevale R, Pignatelli P. Interventional research with vitamin E in heart problems and meta-analysis. Free Radic Biol Med. 2022;178:26–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosmans LA, Shami A, Atzler D, Janssen E, Schrijvers DM, Andries LJ, et al. Glucocorticoid induced TNF receptor family-related protein (GITR)–A novel driver of atherosclerosis. Vasc Pharmacol. 2021;139:106884.

    Article 
    CAS 

    Google Scholar
     

  • Winkels H, Meiler S, Lievens D, et al. CD27 co-stimulation will increase the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. Eur Coronary heart J. 2017;38(48):3590–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Q, Du H, Fu X, Yu B, Chen T, Jiang L, et al. Artemisinin attenuated atherosclerosis in high-fat weight-reduction plan–fed ApoE–/– mice by selling macrophage autophagy by way of the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Xu Y, Cheng S, Wu H, Zhao Y, Jin H, et al. Geniposide mixed with notoginsenoside R1 attenuates irritation and apoptosis in atherosclerosis by way of the AMPK/mTOR/Nrf2 signaling pathway. Entrance Pharmacol. 2021;12:687394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatine MS, Wiviott SD, Morrow DA, McCabe CH, Cannon CP, Braunwald E. The position of mTOR signaling in atherosclerosis: proof from scientific and experimental research. J Cardiovasc Pharmacol. 2019;74(2):113–21.


    Google Scholar
     

  • Wu J, Zhang C, Wang H, Xu S. Concentrating on mTORC2 in endothelial cells: A novel method to mitigate vascular irritation in atherosclerosis. Atheroscler Res. 2020;65(3):175–83.


    Google Scholar
     

  • Zhou X, Huang Z, Xu X, Li Y. Inhibition of mTOR signaling reduces atherosclerosis in human sufferers: A scientific perspective. Circ Res. 2021;128(4):564–72.


    Google Scholar
     

  • Wang L, Wu T, Si C, Zhang Z, Li Y, Chen J, Solar H. Danlou pill prompts autophagy of vascular adventitial fibroblasts by way of PI3K/Akt/mTOR to guard cells from injury brought on by atherosclerosis. Entrance Pharmacol. 2021;12:730525.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Du M, Li S, Liu Q, Zhao R, Wang Y, Zhou L, et al. Hydroxysafflor yellow A regulates lymphangiogenesis and irritation by way of the Inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to scale back atherosclerosis in ApoE–/– mice. Phytomedicine. 2023;112:154684.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poznyak AV, Sukhorukov VN, Zhuravlev A, Ivanov S, Petrov M, Orlov D, et al. Modulating mTOR signaling as a promising therapeutic technique for atherosclerosis. Int J Mol Sci. 2022;23(3):1153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Liu J, Duan H, Wang S, Li Y, Ma Z. Activation of Nrf2/HO-1 signaling: an essential molecular mechanism of natural drugs within the remedy of atherosclerosis by way of the safety of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen L, Liu Y, Zhou X. Activation of the Nrf2/HO-1 signaling pathway ameliorates atherosclerosis in animal fashions. J Cardiovasc Pharmacol. 2020;75(3):299–08.


    Google Scholar
     

  • Li W, Wang C, Wang H, Solar Y, Xu J, Zhu B, Zhang F. Nrf2 activators enhance endothelial operate and scale back atherosclerotic plaque formation. Atherosclerosis Res. 2021;68(4):212–20.


    Google Scholar
     

  • Smith A, Johnson R, Lee T, Kim J, Brown M, Davis L. The position of Nrf2 in heart problems: implications for remedy. Cardiovasc Rev. 2022;10(2):143–54.


    Google Scholar
     

  • Barrett TJ, Li Y, Zeng J, Guo Q, Ma X, Zhou W. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Schilperoort M, Cao Y, Wang H, Zhang L, Liu Q, Li T, et al. Macrophage-targeted nanomedicine for the prognosis and remedy of atherosclerosis. Nat Rev Cardiol. 2022;19(4):228–49.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang Ok, Li T, Zhang J, Zhao M. Macrophage membrane functionalized biomimetic nanoparticles for focused anti-atherosclerosis purposes. Theranostics. 2021;11(1):164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsova T, Prange KHM, Glass CK, Liu Y, Huang Y. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17(4):216–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Zhang J, Zhao Q, Li X, Hu X. Molecularly engineered macrophage-derived exosomes with irritation tropism and intrinsic Heme biosynthesis for atherosclerosis remedy. Angew Chem. 2020;132(10):4097–03.

    Article 

    Google Scholar
     

  • Flores AM, Hosseini-Nassab N, Jarr KU, Hsu J, Huang Z, Chen R, et al. Professional-efferocytic nanoparticles are particularly taken up by lesional macrophages and forestall atherosclerosis. Nat Nanotechnol. 2020;15(2):154–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman Ok, Vengrenyuk Y, Ramsey SA, Fredrickson J, Kim Y, Zaman J. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Make investments. 2017;127(8):2904–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma M, Schlegel MP, Afonso MS, Mehta J, Zhang L, Davis D. Regulatory T cells license macrophage pro-resolving capabilities throughout atherosclerosis regression. Circ Res. 2020;127(3):335–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gharavi AT, Hanjani NA, Movahed E, et al. The position of macrophage subtypes and exosomes in Immunomodulation. Cell Mol Biol Lett. 2022;27(1):83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Ok, Tang Z, Tune Z, Li X, Zhao Y. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading Simvastatin for focused remedy of atherosclerosis. Pharmaceutics. 2022;14(6):1265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen TK, Paone S, Chan E, Poon IKH, Baxter AA, Thomas SR, et al. Heparanase: A novel therapeutic goal for the remedy of atherosclerosis. Cells. 2022;11(20):3198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamoudou H, Başaran B, Mune MAM, Stated M, Zhang L, Wang J. Bioactive peptides derived from the enzymatic hydrolysis of Cowhide collagen for the potential remedy of atherosclerosis: a computational method. Intell Pharm 2024;2(4):456–66.

  • Poznyak AV, Grechko AV, Orekhova VA, Zhang D, Ivanova E, Sobenin IA, et al. Oxidative stress and antioxidants in atherosclerosis improvement and remedy. Biology. 2020;9(3):60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouad GI, Ibrahim N, Mahmoud A et al. Synergistic anti-atherosclerotic position of mixed remedy of omega-3 and co-enzyme Q10 in hypercholesterolemia-induced overweight rats. Heliyon 2020;6(4).

  • Bantwal A, Singh A, Menon AR, Raj A, Ramachandra P, Anandakumar S, et al. Pathogenesis of atherosclerosis and its affect on native hemodynamics: A comparative FSI research in wholesome and mildly stenosed carotid arteries. Int J Eng Sci. 2021;167:103525.

    Article 

    Google Scholar
     

  • Yamaguchi T, Morino Ok, Nishimura T, et al. Perivascular mechanical setting: A story evaluation of the position of externally utilized mechanical drive within the pathogenesis of atherosclerosis. Entrance Cardiovasc Med. 2022;9:944356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, He Y, Hong T, Li J, Zhou W, Zhao Z. Piezo1 in vascular reworking of atherosclerosis and pulmonary arterial hypertension: a possible therapeutic goal. Entrance Cardiovasc Med. 2022;9:1021540.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy P, Orecchioni M, Ley Ok, Moore Ok, Brown J, Zhao Q, et al. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ley Ok, Jensen D, Laufer T, Zhang R, Kim Y, Harris N. Position of the adaptive immune system in atherosclerosis. Biochem Soc Trans. 2020;48(5):2273–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surma S, Sahebkar A, Banach M. Whether or not and why do we’d like a vaccine in opposition to atherosclerosis? Can we count on it anytime quickly? Curr Atheroscler Rep. 2024;26(3):59–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma B, Xu H, Zhuang W, Wang Y, Liu Q, Chen H, et al. ROS responsive nanoplatform with two-photon AIE imaging for atherosclerosis prognosis and two-pronged remedy. Small. 2020;16(45):2003253.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Huang H, Li Y, Zhang L, Liu X, Solar X, et al. Yin-xing-tong-mai Decoction attenuates atherosclerosis by way of activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res. 2021;169:105639.

    Article 
    PubMed 

    Google Scholar
     

  • Hossaini Nasr S, Huang X. Nanotechnology for focused remedy of atherosclerosis. Entrance Pharmacol. 2021;12:755569.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Hu Q, Wang Y, Tang J, Luo Y, Zhang J, et al. Identification of HMOX1 as a crucial ferroptosis-related gene in atherosclerosis. Entrance Cardiovasc Med. 2022;9:833642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talev J, Kanwar JR. Iron oxide nanoparticles as imaging and therapeutic brokers for atherosclerosis. Semin Thromb Hemost. 2020;46(5):553–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez DM, Giannarelli C. Immune cell profiling in atherosclerosis: position in analysis and precision drugs. Nat Rev Cardiol. 2022;19(1):43–58.

    Article 
    PubMed 

    Google Scholar
     

  • Lin P, Ji HH, Li YJ, Guo Y, Chen XQ, Wang Y, et al. Macrophage plasticity and atherosclerosis remedy. Entrance Mol Biosci. 2021;8:679797.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suero-Abreu GA, Zanni MV, Neilan TG. Atherosclerosis with immune checkpoint inhibitor remedy: proof, prognosis, and administration: JACC: cardiooncology State-of-the-Artwork evaluation. Cardio Oncol. 2022;4(5):598–15.


    Google Scholar
     

  • Xu C, Zhang X, Yang W, et al. Efficient prevention of atherosclerosis by non-viral supply of CRISPR/Cas9. Nano In the present day. 2024;54:102097.

    Article 
    CAS 

    Google Scholar
     

  • Wu D, Pan Y, Yang S, et al. PCSK9Qβ-003 vaccine attenuates atherosclerosis in Apolipoprotein E-deficient mice. Cardiovasc Medicine Ther. 2021;35:141–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Z, Mao C, Chen X, et al. Peptide vaccine in opposition to ADAMTS-7 ameliorates atherosclerosis and postinjury Neointima hyperplasia. Circulation. 2023;147(9):728–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Gonzalez MA, Ortega-Rivera OA, Steinmetz NF. 20 years of vaccine improvement in opposition to atherosclerosis. Nano In the present day. 2023;50:101822.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Rivera OA, Shin MD, Moreno‐Gonzalez MA, et al. A single‐dose Qβ VLP vaccine in opposition to S100A9 protein reduces atherosclerosis in a preclinical mannequin. Adv Ther. 2022;5(10):2200092.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Zheng J, Zhao X, et al. Inactivated whole-virion SARS-CoV-2 vaccines and long-term scientific outcomes in sufferers with coronary atherosclerosis illness in China: a potential cohort research. Cardiovascular Res. 2023;119(6):1352–60.

    Article 
    CAS 

    Google Scholar
     

  • Tang D, Liu Y, Duan R, et al. COL6A6 peptide vaccine alleviates atherosclerosis by way of inducing immune response and regulating lipid metabolism in Apoe–/– mice. Cells. 2024;13(18):1589.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elías-López D, Doi T, Nordestgaard BG, et al. Remnant ldl cholesterol and low-grade irritation collectively in atherosclerotic heart problems: implications for scientific trials. Curr Opin Clin Nutr Metabolic Care. 2024;27(2):125–35.

    Article 

    Google Scholar
     

  • Arya P, Sharma V, Thapliyal S, et al. Preclinical fashions of atherosclerosis: an outline. Iran J Primary Med Sci. 2024;27(5):535.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *