Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).
Wilson, A. et al. Dormant and self-renewing hematopoietic stem cells and their niches. Ann. N. Y. Acad. Sci. 1106, 64–75 (2007).
Batsivari, A. et al. Dynamic responses of the haematopoietic stem cell area of interest to various stresses. Nat. Cell Biol. 22, 7–17 (2020).
Hofmann, J. & Kokkaliaris, Ok. D. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 144, 21–34 (2024).
Konturek-Ciesla, A., Olofzon, R., Kharazi, S. & Bryder, D. Implications of stress-induced gene expression for hematopoietic stem cell growing old research. Nat. Ageing 4, 177–184 (2024).
Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).
Flach, J. et al. Replication stress is a potent driver of practical decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).
Balassa, Ok., Danby, R. & Rocha, V. Haematopoietic stem cell transplants: rules and indications. Br. J. Hosp. Med. 80, 33–39 (2019).
Zhao, M. et al. FGF signaling facilitates postinjury restoration of mouse hematopoietic system. Blood 120, 1831–1842 (2012).
Qian, P. et al. The Dlk1-Gtl2 locus preserves LT-HSC operate by inhibiting the PI3K-mTOR pathway to limit mitochondrial metabolism. Cell Stem Cell 18, 214–228 (2016).
Ito, Ok. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).
Nakamura-Ishizu, A., Ito, Ok. & Suda, T. Hematopoietic stem cell metabolism throughout growth and growing old. Dev. Cell 54, 239–255 (2020).
Du, C. et al. Mitochondrial serine catabolism safeguards upkeep of the hematopoietic stem cell pool in homeostasis and damage. Cell Stem Cell 31, 1484–1500.e1489 (2024).
Zhou, C. et al. Nynrin preserves hematopoietic stem cell operate by inhibiting the mitochondrial permeability transition pore opening. Cell Stem Cell 31, 1359–1375.e1358 (2024).
Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA harm throughout growing old that’s repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).
Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes harm chromosomes and mutate stem cells. Nature 553, 171–177 (2018).
Lynch, J. et al. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood 143, 1586–1598 (2024).
Hu, L. et al. Radiation-induced bystander results impair transplanted human hematopoietic stem cells through oxidative DNA harm. Blood 137, 3339–3350 (2021).
Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).
Ito, Ok. & Suda, T. Metabolic necessities for the upkeep of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).
Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy inside probably the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).
Tang, Y. et al. Conditioning remedy with N-acetyl-l-cysteine, decitabine and modified BUCY routine for myeloid malignancies sufferers previous to allogeneic hematopoietic stem cell transplantation. Am. J. Hematol. 98, 881–889 (2023).
Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
Zhang, R., Jiang, B., Fan, Ok., Gao, L. & Yan, X. Designing nanozymes for in vivo functions. Nat. Rev. Bioeng. 2, 849–868 (2024).
Wei, T. et al. Janus liposozyme for the modulation of redox and immune homeostasis in contaminated diabetic wounds. Nat. Nanotechnol. 19, 1178–1189 (2024).
Xu, J. et al. Multimodal sensible techniques reprogramme macrophages and take away urate to deal with gouty arthritis. Nat. Nanotechnol. 19, 1544–1557 (2024).
Gao, L. et al. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).
Shi, C., Li, Y. & Gu, N. Iron-based nanozymes in illness analysis and therapy. ChemBioChem 21, 2722–2732 (2020).
Cao, F. et al. Synthetic-enzymes-armed Bifidobacterium longum probiotics for assuaging intestinal irritation and microbiota dysbiosis. Nat. Nanotechnol. 18, 617–627 (2023).
Hu, X. et al. A man-made metabzyme for tumour-cell-specific metabolic remedy. Nat. Nanotechnol. 19, 1712–1722 (2024).
Zhang, B. et al. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for therapy of radiation-induced hematopoietic damage. Biomaterials 293, 121980 (2023).
Chen, Z. et al. Twin enzyme-like actions of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6, 4001–4012 (2012).
Trujillo-Alonso, V. et al. FDA-approved ferumoxytol shows anti-leukaemia efficacy towards cells with low ferroportin ranges. Nat. Nanotechnol. 14, 616–622 (2019).
DiNardo, C. D. et al. Venetoclax mixed with FLAG-IDA induction and consolidation in newly recognized and relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 39, 2768–2778 (2021).
Mattes, Ok., Vellenga, E. & Schepers, H. Differential redox-regulation and mitochondrial dynamics in regular and leukemic hematopoietic stem cells: a possible window for leukemia remedy. Crit. Rev. Oncol. Hematol. 144, 102814 (2019).
Tarangelo, A. & Dixon, S. J. Nanomedicine: an iron age for most cancers remedy. Nat. Nanotechnol. 11, 921–922 (2016).
Shen, Z. et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano 12, 11355–11365 (2018).
Wang, Q. et al. Response of MAPK pathway to iron oxide nanoparticles in vitro therapy promotes osteogenic differentiation of hBMSCs. Biomaterials 86, 11–20 (2016).
Li, D. et al. Superparamagnetic iron oxide nanoparticles and static magnetic area regulate neural stem cell proliferation. Entrance. Cell. Neurosci. 15, 815280 (2021).
Khan, M. I. et al. Induction of ROS, mitochondrial harm and autophagy in lung epithelial most cancers cells by iron oxide nanoparticles. Biomaterials 33, 1477–1488 (2012).
Yang, Y. et al. 3D-printed manganese dioxide included scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by transforming osteo-regenerative microenvironment. Bioact. Mater. 44, 354–370 (2025).
Huang, Y. et al. Enteric-coated cerium dioxide nanoparticles for efficient inflammatory bowel illness therapy by regulating the redox steadiness and intestine microbiome. Biomaterials 314, 122822 (2025).
Mazuel, F. et al. Huge intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue ranges. ACS Nano 10, 7627–7638 (2016).
Cabrera, D. et al. Dynamical magnetic response of iron oxide nanoparticles inside dwell cells. ACS Nano 12, 2741–2752 (2018).
Sardiello, M. et al. A gene community regulating lysosomal biogenesis and performance. Science 325, 473–477 (2009).
Wilkinson, A. C. et al. Lengthy-term ex vivo haematopoietic-stem-cell enlargement permits nonconditioned transplantation. Nature 571, 117–121 (2019).
Ng, E. S. et al. Lengthy-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02360-7 (2024).
Bai, T. et al. Enlargement of primitive human hematopoietic stem cells by tradition in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).
Chen, Y. et al. ADGRG1 enriches for practical human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Make investments. 131, e148329 (2021).
Bourquin, J. et al. Discount of nanoparticle load in cells by mitosis however not exocytosis. ACS Nano 13, 7759–7770 (2019).
Kim, J. A., Åberg, C., Salvati, A. & Dawson, Ok. A. Position of cell cycle on the mobile uptake and dilution of nanoparticles in a cell inhabitants. Nat. Nanotechnol. 7, 62–68 (2011).
Ye, D. et al. Lengthy-term destiny monitoring and quantitative analyzing of nanoparticles in stem cells with bright-field microscopy. Nano Right this moment 44, 101506 (2022).
Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of motion and scientific methods. Nat. Rev. Most cancers 3, 330–338 (2003).
Fan, C. et al. Selenocystine potentiates most cancers cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA harm and inactivation of the ERK pathway. Free Radic. Biol. Med. 65, 305–316 (2013).
Wang, Y. et al. Complete physique irradiation causes residual bone marrow damage by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med. 48, 348–356 (2010).
Rodrigues-Moreira, S. et al. Low-dose irradiation promotes persistent oxidative stress and reduces self-renewal in hematopoietic stem cells. Cell Rep. 20, 3199–3211 (2017).
Singh, S. Ok. et al. Id1 ablation protects hematopoietic stem cells from stress-induced exhaustion and growing old. Cell Stem Cell 23, 252–265.e258 (2018).
Huang, Y., Hsu, J. C., Koo, H. & Cormode, D. P. Repurposing ferumoxytol: diagnostic and therapeutic functions of an FDA-approved nanoparticle. Theranostics 12, 796–816 (2022).
Zanganeh, S. et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016).
Theruvath, A. J. et al. Monitoring stem cell implants in cartilage defects of minipigs by utilizing ferumoxytol-enhanced MRI. Radiology 292, 129–137 (2019).
Thu, M. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell monitoring by magnetic resonance imaging. Nat. Med. 18, 463–467 (2012).
Politi, L. S. et al. Magnetic-resonance-based monitoring and quantification of intravenously injected neural stem cell accumulation within the brains of mice with experimental a number of sclerosis. Stem Cells 25, 2583–2592 (2007).
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
Vermeulen, L. M. P. et al. Endosomal measurement and membrane leakiness affect proton sponge-based rupture of endosomal vesicles. ACS Nano 12, 2332–2345 (2018).
Rueda-Gensini, L. et al. Tailoring iron oxide nanoparticles for environment friendly mobile internalization and endosomal escape. Nanomaterials 10, 1816 (2020).
Vermeulen, L. M. P., De Smedt, S. C., Remaut, Ok. & Braeckmans, Ok. The proton sponge speculation: fable or reality? Eur. J. Pharm. Biopharm. 129, 184–190 (2018).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).
Robinson, M. D., McCarthy, D. J. & Smyth, G. Ok. edgeR: a Bioconductor bundle for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment instruments: paths towards the excellent practical evaluation of enormous gene lists. Nucleic Acids Res. 37, 1–13 (2009).