Ferroelectric topologies in BaTiO3 nanomembranes for gentle subject manipulation

Ferroelectric topologies in BaTiO3 nanomembranes for gentle subject manipulation


  • Jia, C.-L., City, Okay. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct remark of steady electrical dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortexlike area constructions in ferroelectric skinny movies. Phys. Rev. Lett. 104, 207602 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. L. et al. Commentary of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 movies. Science 348, 547–551 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav, A. Okay. et al. Commentary of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nahas, Y. et al. Inverse transition of labyrinthine area patterns in ferroelectric skinny movies. Nature 577, 47–51 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Commentary of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubko, P. et al. Destructive capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sánchez-Santolino, G. et al. A 2D ferroelectric vortex sample in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafer, P. et al. Emergent chirality within the electrical polarization texture of titanate superlattices. Proc. Nat. Acad. Sci. USA 115, 915–920 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, P. et al. Electrical subject management of chirality. Sci. Adv. 8, eabj8030 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. Electrical field-manipulated optical chirality in ferroelectric vortex domains. Adv. Mater. 36, e2408400 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yadav, A. Okay. et al. Spatially resolved steady-state unfavourable capacitance. Nature 565, 468–471 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Non permanent formation of extremely conducting area partitions for non-destructive read-out of ferroelectric domain-wall resistance switching reminiscences. Nat. Mater. 17, 49–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojac, T. et al. Area-wall conduction in ferroelectric BiFeO3 managed by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, N. et al. Gentle propagation with section discontinuities: generalized legal guidelines of reflection and refraction. Science 334, 333–337 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jisha, C. P., Nolte, S. & Alberucci, A. Geometric section in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev. https://doi.org/10.1002/lpor.202100003 (2021).

  • Jin, H. et al. On-chip technology and manipulation of entangled photons primarily based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Excessive-Q lithium niobate microdisk resonators on a chip for environment friendly electro-optic modulation. Choose. Categorical 23, 23072–23078 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S., Zhu, Y. & Ming, N. Quasi-phase-matched third-harmonic technology in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Broadband spin and orbital momentum modulator utilizing self-assembled nanostructures. Adv. Mater. 36, 2412007 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ni, J. C. et al. Multidimensional section singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of sunshine and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Current advances on optical vortex technology. Nanophotonics 7, 1533–1556 (2018).

    Article 

    Google Scholar
     

  • Bai, Y., Lv, H., Fu, X. & Yang, Y. Vortex beam: technology and detection of orbital angular momentum. Chin. Choose. Lett. 20, 012601 (2022).

    Article 

    Google Scholar
     

  • Yao, J. et al. Era of optical vortices by diffraction from round apertures. ACS Photonics 10, 4267–4272 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space knowledge transmission using orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. Advances in communications utilizing optical vortices. Photonics Res. 4, B14–B28 (2016).

    Article 

    Google Scholar
     

  • Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2019).

    Article 

    Google Scholar
     

  • Tan, C. et al. Engineering polar vortex from topologically trivial area structure. Nat. Commun. 12, 4620 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govinden, V. et al. Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices. Nat. Commun. 14, 4178 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, G. et al. Tremendous-elastic ferroelectric single-crystal membrane with steady electrical dipole rotation. Science 366, 475–479 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, H. Y. et al. Nonvolatile ferroelectric area wall reminiscence built-in on silicon. Nat. Commun. 13, 4332 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, D. X. et al. Freestanding crystalline oxide perovskites all the way down to the monolayer restrict. Nature 570, 87–90 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. S. et al. Excessive tensile pressure states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, L. et al. Excessive-density switchable skyrmion-like polar nanodomains built-in on silicon. Nature 603, 63–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugachev, A. M. et al. Damaged native symmetry in paraelectric BaTiO3 proved by second harmonic technology. Phys. Rev. Lett. 108, 247601 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics utilizing optical second harmonic technology. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric area partitions revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of sunshine. Science 358, 896–901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bliokh, Okay. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of sunshine. Nat. Photonics 9, 796–808 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. in Fundamentals and Functions of Nonlinear Nanophotonics (ed. Panoiu N. C.) 393–440 (Elsevier, 2024).

  • Li, G. et al. Steady management of the nonlinearity section for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, C. Q. et al. Area evolution in bended freestanding BaTiO3 ultrathin movies: a phase-field simulation. Appl. Phys. Lett. 116, 152903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balke, N. et al. Deterministic management of ferroelastic switching in multiferroic supplies. Nat. Nanotechnol. 4, 868–875 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matzen, S. et al. Tremendous switching and management of in-plane ferroelectric nanodomains in strained skinny movies. Nat. Commun. 5, 4415 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tate, M. W. et al. Excessive dynamic vary pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Goodman, J. W. Introduction to Fourier Optics third edn (Roberts & Firm, 2005).

  • Sroor, H. et al. Excessive-purity orbital angular momentum states from a visual metasurface laser. Nat. Photonics 14, 498–503 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *