Francl, M. Coronary heart of glass. Nat. Chem. 14, 717–718 (2022).
Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a inexperienced chemistry future. Science 367, 397–400 (2020).
Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).
Cao, S., Fan, W., Chang, R., Yuan, C. & Yan, X. Metallic ion-coordinated biomolecular noncovalent glass with ceramic-like mechanics. CCS Chem. https://doi.org/10.31635/ccschem.024.202303832 (2024).
Wang, C., Yokota, T. & Someya, T. Pure biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).
La, T.-G. & Le, L. H. Versatile and wearable ultrasound gadget for medical purposes: a evaluate on supplies, structural designs, and present challenges. Adv. Mater. Technol. 7, 2100798 (2022).
Tune, Q. et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem. Rev. 121, 13936–13995 (2021).
Sheehan, F. et al. Peptide-based supramolecular programs chemistry. Chem. Rev. 121, 13869–13914 (2021).
Hu, Ok. et al. Tuning peptide self-assembly by an in-tether chiral middle. Sci. Adv. 4, eaar5907 (2018).
Borthwick, A. D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive pure merchandise. Chem. Rev. 112, 3641–3716 (2012).
Bellezza, I., Peirce, M. J. & Minelli, A. Cyclic dipeptides: from bugs to mind. Tendencies Mol. Med. 20, 551–558 (2014).
Fan, Z. et al. Close to infrared fluorescent peptide nanoparticles for enhancing esophageal most cancers therapeutic efficacy. Nat. Commun. 9, 2605 (2018).
Tao, Ok. et al. Quantum confined peptide assemblies with tunable seen to near-infrared spectral vary. Nat. Commun. 9, 3217 (2018).
Merz, M. L. et al. De novo improvement of small cyclic peptides which might be orally bioavailable. Nat. Chem. Biol. 20, 624–633 (2024).
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Tendencies in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Chen, Y. et al. Self-assembly of cyclic dipeptides: platforms for purposeful supplies. Protein Pept. Lett. 27, 688–697 (2020).
Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for lively optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).
Yang, M. et al. Cyclic dipeptide nanoribbons shaped by dye-mediated hydrophobic self-assembly for most cancers chemotherapy. J. Colloid Interface Sci. 557, 458–464 (2019).
Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their purposes. ChemPlusChem. 82, 88–106 (2016).
Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).
Yuan, C. et al. Hierarchically oriented group in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).
Greer, A. L. Confusion by design. Nature 366, 303–304 (1993).
Perim, E. et al. Spectral descriptors for bulk metallic glasses primarily based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).
Ke, Y. et al. Good home windows: electro-, thermo-, mechano-, photochromics, and past. Adv. Vitality Mater. 9, 1902066 (2019).
Kasimuthumaniyan, S., Reddy, A. A., Krishnan, N. M. A. & Gosvami, N. N. Understanding the function of post-indentation restoration on the hardness of glasses: case of silica, borate, and borosilicate glasses. J. Non-Cryst. Solids 534, 119955 (2020).
Knowles, T. P. J. & Buehler, M. J. Nanomechanics of purposeful and pathological amyloid supplies. Nat. Nanotechnol. 6, 469–479 (2011).
Fang, W. et al. Natural–inorganic covalent–ionic molecules for elastic ceramic plastic. Nature 619, 293–299 (2023).
Hong, Y. P. et al. Crystal construction and spectroscopic properties of cyclic dipeptide: a racemic combination of cyclo(d-prolyl-l-tyrosyl) and cyclo(l-prolyl-d-tyrosyl). Bull. Korean Chem. Soc. 35, 2299–2303 (2014).
Rozenberg, M., Shoham, G., Reva, I. & Fausto, R. A correlation between the proton stretching vibration crimson shift and the hydrogen bond size in polycrystalline amino acids and peptides. Phys. Chem. Chem. Phys. 7, 2376–2383 (2005).
Bertoldo Menezes, D. et al. Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Phys. Chem. Chem. Phys. 23, 1649–1665 (2021).
Swallen, S. F. et al. Natural glasses with distinctive thermodynamic and kinetic stability. Science 315, 353–356 (2007).
Ito, Ok., Moynihan, C. T. & Angell, C. A. Thermodynamic willpower of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).
Smedskjaer, M. M. et al. Topological rules of borosilicate glass chemistry. J. Phys. Chem. B 115, 12930–12946 (2011).
Wang, L.-M., Angell, C. A. & Richert, R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).
Böhmer, R., Ngai, Ok. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in sturdy and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).
Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and trendy supplies. Nat. Mater. 10, 823–837 (2011).
Huang, D. & McKenna, G. B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001).
Rodrigues, A. C., Viciosa, M. T., Danède, F., Affouard, F. & Correia, N. T. Molecular mobility of amorphous S-flurbiprofen: a dielectric rest spectroscopy method. Mol. Pharm. 11, 112–130 (2014).
Shi, Y. et al. Revealing the connection between liquid fragility and medium-range order in silicate glasses. Nat. Commun. 14, 13 (2023).
Novikov, V. N. Higher certain of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys. Rev. E 106, 024611 (2022).
Kaushal, A. M. & Bansal, A. Ok. Thermodynamic habits of glassy state of structurally associated compounds. Eur. J. Pharm. Biopharm. 69, 1067–1076 (2008).
Miracle, D. B. & Senkov, O. N. A vital evaluate of excessive entropy alloys and associated ideas. Acta Mater. 122, 448–511 (2017).
Yang, M. et al. Excessive thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).
Ràfols-Ribé, J. et al. Excessive-performance natural light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).
Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 131, 13180 (2009).
Oliver, W. C. & Pharr, G. M. An improved approach for figuring out hardness and elastic modulus utilizing load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).
Jiang, B. et al. Excessive-entropy-stabilized chalcogenides with excessive thermoelectric efficiency. Science 371, 830–834 (2021).
Van Der Spoel, D. et al. GROMACS: quick, versatile, and free. J. Comput. Chem. 26, 1701–1718 (2005).
Ulmschneider, J. P. & Jorgensen, W. L. Polypeptide folding utilizing Monte Carlo sampling, concerted rotation, and continuum solvation. J. Am. Chem. Soc. 126, 1849–1857 (2004).
Abascal, J. L. F. & Vega, C. A basic objective mannequin for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).
Brooks, B. R. et al. CHARMM: a program for macromolecular power, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an exterior bathtub. J. Chem. Phys. 81, 3684–3690 (1984).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling by velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Tao, Ok. et al. Bioinspired supramolecular packing allows excessive thermo-sustainability. Angew. Chem. Int. Ed. 59, 19037–19041 (2020).
Burley, S. Ok. & Petsko, G. A. Fragrant-aromatic interplay: a mechanism of protein construction stabilization. Science 229, 23–28 (1985).
Ogliaro, F. et al. Gaussian 09, revision A. 02. (Gaussian, 2009).
Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the variations of separate complete energies. Some procedures with decreased errors. Mol. Phys. 19, 553–566 (1970).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Yuan, C. et al. Cyclic Peptide Excessive-Entropy Noncovalent Glass. Figshare https://doi.org/10.6084/m9.figshare.26181884 (2024).