Excessive-entropy non-covalent cyclic peptide glass

Excessive-entropy non-covalent cyclic peptide glass


  • Francl, M. Coronary heart of glass. Nat. Chem. 14, 717–718 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a inexperienced chemistry future. Science 367, 397–400 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S., Fan, W., Chang, R., Yuan, C. & Yan, X. Metallic ion-coordinated biomolecular noncovalent glass with ceramic-like mechanics. CCS Chem. https://doi.org/10.31635/ccschem.024.202303832 (2024).

  • Wang, C., Yokota, T. & Someya, T. Pure biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La, T.-G. & Le, L. H. Versatile and wearable ultrasound gadget for medical purposes: a evaluate on supplies, structural designs, and present challenges. Adv. Mater. Technol. 7, 2100798 (2022).

    Article 

    Google Scholar
     

  • Tune, Q. et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem. Rev. 121, 13936–13995 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheehan, F. et al. Peptide-based supramolecular programs chemistry. Chem. Rev. 121, 13869–13914 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Ok. et al. Tuning peptide self-assembly by an in-tether chiral middle. Sci. Adv. 4, eaar5907 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borthwick, A. D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive pure merchandise. Chem. Rev. 112, 3641–3716 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellezza, I., Peirce, M. J. & Minelli, A. Cyclic dipeptides: from bugs to mind. Tendencies Mol. Med. 20, 551–558 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Z. et al. Close to infrared fluorescent peptide nanoparticles for enhancing esophageal most cancers therapeutic efficacy. Nat. Commun. 9, 2605 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Ok. et al. Quantum confined peptide assemblies with tunable seen to near-infrared spectral vary. Nat. Commun. 9, 3217 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merz, M. L. et al. De novo improvement of small cyclic peptides which might be orally bioavailable. Nat. Chem. Biol. 20, 624–633 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Tendencies in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Self-assembly of cyclic dipeptides: platforms for purposeful supplies. Protein Pept. Lett. 27, 688–697 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for lively optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yang, M. et al. Cyclic dipeptide nanoribbons shaped by dye-mediated hydrophobic self-assembly for most cancers chemotherapy. J. Colloid Interface Sci. 557, 458–464 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their purposes. ChemPlusChem. 82, 88–106 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, C. et al. Hierarchically oriented group in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Greer, A. L. Confusion by design. Nature 366, 303–304 (1993).

    Article 

    Google Scholar
     

  • Perim, E. et al. Spectral descriptors for bulk metallic glasses primarily based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, Y. et al. Good home windows: electro-, thermo-, mechano-, photochromics, and past. Adv. Vitality Mater. 9, 1902066 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kasimuthumaniyan, S., Reddy, A. A., Krishnan, N. M. A. & Gosvami, N. N. Understanding the function of post-indentation restoration on the hardness of glasses: case of silica, borate, and borosilicate glasses. J. Non-Cryst. Solids 534, 119955 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, T. P. J. & Buehler, M. J. Nanomechanics of purposeful and pathological amyloid supplies. Nat. Nanotechnol. 6, 469–479 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, W. et al. Natural–inorganic covalent–ionic molecules for elastic ceramic plastic. Nature 619, 293–299 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Y. P. et al. Crystal construction and spectroscopic properties of cyclic dipeptide: a racemic combination of cyclo(d-prolyl-l-tyrosyl) and cyclo(l-prolyl-d-tyrosyl). Bull. Korean Chem. Soc. 35, 2299–2303 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rozenberg, M., Shoham, G., Reva, I. & Fausto, R. A correlation between the proton stretching vibration crimson shift and the hydrogen bond size in polycrystalline amino acids and peptides. Phys. Chem. Chem. Phys. 7, 2376–2383 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertoldo Menezes, D. et al. Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Phys. Chem. Chem. Phys. 23, 1649–1665 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swallen, S. F. et al. Natural glasses with distinctive thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, Ok., Moynihan, C. T. & Angell, C. A. Thermodynamic willpower of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Smedskjaer, M. M. et al. Topological rules of borosilicate glass chemistry. J. Phys. Chem. B 115, 12930–12946 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L.-M., Angell, C. A. & Richert, R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Böhmer, R., Ngai, Ok. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in sturdy and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).

    Article 

    Google Scholar
     

  • Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and trendy supplies. Nat. Mater. 10, 823–837 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D. & McKenna, G. B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Rodrigues, A. C., Viciosa, M. T., Danède, F., Affouard, F. & Correia, N. T. Molecular mobility of amorphous S-flurbiprofen: a dielectric rest spectroscopy method. Mol. Pharm. 11, 112–130 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Revealing the connection between liquid fragility and medium-range order in silicate glasses. Nat. Commun. 14, 13 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novikov, V. N. Higher certain of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys. Rev. E 106, 024611 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaushal, A. M. & Bansal, A. Ok. Thermodynamic habits of glassy state of structurally associated compounds. Eur. J. Pharm. Biopharm. 69, 1067–1076 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miracle, D. B. & Senkov, O. N. A vital evaluate of excessive entropy alloys and associated ideas. Acta Mater. 122, 448–511 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, M. et al. Excessive thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).

    Article 

    Google Scholar
     

  • Ràfols-Ribé, J. et al. Excessive-performance natural light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 131, 13180 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, W. C. & Pharr, G. M. An improved approach for figuring out hardness and elastic modulus utilizing load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, B. et al. Excessive-entropy-stabilized chalcogenides with excessive thermoelectric efficiency. Science 371, 830–834 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Der Spoel, D. et al. GROMACS: quick, versatile, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ulmschneider, J. P. & Jorgensen, W. L. Polypeptide folding utilizing Monte Carlo sampling, concerted rotation, and continuum solvation. J. Am. Chem. Soc. 126, 1849–1857 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abascal, J. L. F. & Vega, C. A basic objective mannequin for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks, B. R. et al. CHARMM: a program for macromolecular power, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an exterior bathtub. J. Chem. Phys. 81, 3684–3690 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling by velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Tao, Ok. et al. Bioinspired supramolecular packing allows excessive thermo-sustainability. Angew. Chem. Int. Ed. 59, 19037–19041 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Burley, S. Ok. & Petsko, G. A. Fragrant-aromatic interplay: a mechanism of protein construction stabilization. Science 229, 23–28 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogliaro, F. et al. Gaussian 09, revision A. 02. (Gaussian, 2009).

  • Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the variations of separate complete energies. Some procedures with decreased errors. Mol. Phys. 19, 553–566 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, C. et al. Cyclic Peptide Excessive-Entropy Noncovalent Glass. Figshare https://doi.org/10.6084/m9.figshare.26181884 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *