Hu, B. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi therapy of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).
Zhao, J. H. & Guo, H. S. RNA silencing: from discovery and elucidation to utility and views. J. Integr. Plant Biol. 64, 476–498 (2022).
Chen, Y. et al. Focusing on Xkr8 by way of nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy medication for most cancers immunochemotherapy. Nat. Nanotechnol. 18, 193–204 (2023).
Chen, X. et al. RNA interference-based remedy and its supply techniques. Most cancers Metast. Rev. 37, 107–124 (2018).
Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Supply supplies for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).
Kim, B., Park, J. H. & Sailor, M. J. Rekindling RNAi remedy: supplies design necessities for in vivo siRNA supply. Adv. Mater. 31, e1903637 (2019).
Jiang, X. et al. Oral supply of nucleic acid therapeutics: challenges, methods, and alternatives. Drug Discov. Immediately 28, 103507 (2023).
Liang, J. et al. Sphk2 RNAi nanoparticles suppress tumor progress by way of downregulating most cancers cell derived exosomal microRNA. J. Management. Launch 286, 348–357 (2018).
Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles improve siRNA supply by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).
Zhuang, J. et al. Focused gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 6, eaaz6108 (2020).
Dammes, N. et al. Conformation-sensitive concentrating on of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).
Blaby-Haas, C. E. & Service provider, S. S. Lysosome-related organelles as mediators of steel homeostasis. J. Biol. Chem. 289, 28129–28136 (2014).
Uddin, N., Binzel, D. W., Shu, D., Fu, T.-M. & Guo, P. Focused supply of RNAi to most cancers cells utilizing RNA-ligand displaying exosome. Acta. Pharm. Sin. B 13, 1383–1399 (2023).
Han, Okay. et al. A tumor focused chimeric peptide for synergistic endosomal escape and remedy by dual-stage gentle manipulation. Adv. Funct. Mater. 25, 1248–1257 (2015).
Wittrup, A. et al. Visualizing lipid-formulated siRNA launch from endosomes and goal gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).
Gilleron, J. et al. Picture-based evaluation of lipid nanoparticle-mediated siRNA supply, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).
Miller, J. B. & Siegwart, D. J. Design of artificial supplies for intracellular supply of RNAs: from siRNA-mediated gene silencing to CRISPR/Cas gene modifying. Nano Res. 11, 5310–5337 (2018).
Selby, L. I., Cortez-Jugo, C. M., Such, G. Okay. & Johnston, A. P. R. Nanoescapology: progress towards understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1452 (2017).
Zhang, Y. et al. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity in opposition to most cancers. Acta. Pharm. Sin. B 13, 3518–3534 (2023).
Kamerkar, S. et al. Exosomes facilitate therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers. Nature 546, 498–503 (2017).
Herrmann, I. Okay., Wooden, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug supply platform. Nat. Nanotechnol. 16, 748–759 (2021).
Kalluri, R. & LeBleu, V. S. The biology, perform, and biomedical functions of exosomes. Science 367, eaau6977 (2020).
Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).
Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).
Tian, T. et al. Exosome uptake via clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 supply. J. Biol. Chem. 289, 22258–22267 (2014).
Cui, L. et al. Vesicle trafficking and vesicle fusion: mechanisms, organic capabilities, and their implications for potential illness remedy. Mol. Biomed. 3, 29 (2022).
Hindi, S. M. et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens goal skeletal muscle for gene supply. Cell 186, 2062–2077.e17 (2023).
Ji, X. et al. In situ cell membrane fusion for engineered tumor cells by worm-like nanocell mimics. ACS Nano 14, 7462–7474 (2020).
Chen, P. et al. A plant-derived pure photosynthetic system for bettering cell anabolism. Nature 612, 546–554 (2022).
Ho, N. T. et al. Membrane fusion and drug supply with carbon nanotube porins. Proc. Natl Acad. Sci. USA 118, e2016974118 (2021).
Zheng, Z., Li, Z., Xu, C., Guo, B. & Guo, P. Folate-displaying exosome mediated cytosolic supply of siRNA avoiding endosome trapping. J. Management. Launch 311–312, 43–49 (2019).
Sanders, D. W. et al. SARS-CoV-2 requires ldl cholesterol for viral entry and pathological syncytia formation. eLife 10, e65962 (2021).
Wang, C. et al. Totally different areas of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE meeting. Nat. Commun. 11, 1531 (2020).
Nakato, M. et al. ABCA13 dysfunction related to psychiatric issues causes impaired ldl cholesterol trafficking. J. Biol. Chem. 296, 100166 (2021).
Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).
Linetti, A. et al. Ldl cholesterol discount impairs exocytosis of synaptic vesicles. J. Cell Sci. 123, 595–605 (2010).
Lötvall, J. et al. Minimal experimental necessities for definition of extracellular vesicles and their capabilities: a place assertion from the Worldwide Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).
Düzgüneş, N. & Nir, S. Mechanisms and kinetics of liposome-cell interactions. Adv. Drug Deliv. Rev. 40, 3–18 (1999).
Kong, L., Askes, S. H. C., Bonnet, S., Kros, A. & Campbell, F. Temporal management of membrane fusion via photolabile PEGylation of liposome membranes. Angew. Chem. Int. Ed. 55, 1396–1400 (2016).
Skotland, T., Hessvik, N. P., Sandvig, Okay. & Llorente, A. Exosomal lipid composition and the function of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 60, 9–18 (2019).
Arnarez, C. et al. Dry Martini, a coarse-grained drive subject for lipid membrane simulations with implicit solvent. J. Chem. Idea Comput. 11, 260–275 (2015).
Samuel, M. et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence within the major tumor however accelerates most cancers metastasis. Nat. Commun. 12, 3950 (2021).
Ziolkowski, W. et al. Methyl-beta-cyclodextrin induces mitochondrial ldl cholesterol depletion and alters the mitochondrial construction and bioenergetics. FEBS Lett. 584, 4606–4610 (2010).
Chabanel, A. et al. Affect of ldl cholesterol content material on crimson cell membrane viscoelasticity and fluidity. Biophys. J. 44, 171–176 (1983).
Li, M. et al. Nanoscale imaging and mechanical evaluation of Fc receptor-mediated macrophage phagocytosis in opposition to most cancers cells. Langmuir 30, 1609–1621 (2014).
Zheng, D. W. et al. Hierarchical micro-/nanostructures from human hair for biomedical functions. Adv. Mater. 30, e1800836 (2018).
Qiu, Y. et al. Yolk-shell cationic liposomes overcome mucus and epithelial limitations for enhanced oral drug supply. Big 17, 100221 (2024).
Wang, X. et al. Environment friendly base modifying in methylated areas with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).
Zhao, E. et al. Spatial transcriptomics at subspot decision with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).
Xue, C. et al. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted supply of siRNAs. Nat. Commun. 12, 2928 (2021).
Liu, H.-J. et al. Built-in mixture therapy utilizing a ‘sensible’ chemotherapy and microRNA supply system improves outcomes in an orthotopic colorectal most cancers mannequin. Adv. Funct. Mater. 28, 1801118 (2018).