Deep subwavelength topological edge state in a hyperbolic medium

Deep subwavelength topological edge state in a hyperbolic medium


  • Xia, Y. et al. Statement of a large-gap topological-insulator class with a single Dirac cone on the floor. Nat. Phys. 5, 398–402 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    CAS 

    Google Scholar
     

  • von Klitzing, Okay. The quantized Corridor impact. Rev. Mod. Phys. 58, 519–531 (1986).

    Article 

    Google Scholar
     

  • Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M., Jacob, Z. & Rho, J. Current advances in 2D, 3D and higher-order topological photonics. Mild Sci. Appl. 9, 130 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. & Raghu, S. Attainable realization of directional optical waveguides in photonic crystals with damaged time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Strong optical delay strains with topological safety. Nat. Phys. 7, 907–912 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rüter, C. E. et al. Statement of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ota, Y. et al. Energetic topological photonics. Nanophotonics 9, 547–567 (2020).

    Article 

    Google Scholar
     

  • Fang, Okay., Yu, Z. & Fan, S. Realizing efficient magnetic discipline for photons by controlling the part of dynamic modulation. Nat. Photonics 6, 782–787 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rider, M. S. et al. A perspective on topological nanophotonics: present standing and future challenges. J. Appl. Phys. 125, 120901 (2019).

    Article 

    Google Scholar
     

  • Lu, C.-C. et al. On-chip topological nanophotonic units. Chip 1, 100025 (2022).

    Article 

    Google Scholar
     

  • Rider, M. S. et al. Advances and prospects in topological nanoparticle photonics. ACS Photonics 9, 1483–1499 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. & Rho, J. Topological edge and nook states in a two-dimensional photonic Su–Schrieffer–Heeger lattice. Nanophotonics 9, 3227–3234 (2020).

    Article 

    Google Scholar
     

  • Cox, J. D. & García de Abajo, F. J. Nonlinear graphene nanoplasmonics. Acc. Chem. Res. 52, 2536–2547 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rostami, H., Katsnelson, M. I. & Polini, M. Principle of plasmonic results in nonlinear optics: the case of graphene. Phys. Rev. B 95, 035416 (2017).

    Article 

    Google Scholar
     

  • Hendry, E., Hale, P. J., Moger, J., Savchenko, A. Okay. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, N. et al. Third harmonic era in graphene and few-layer graphite movies. Phys. Rev. B 87, 121406 (2013).

    Article 

    Google Scholar
     

  • Lundeberg, M. B. et al. Tuning quantum nonlocal results in graphene plasmonics. Science 357, 187–191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boroviks, S. et al. Extraordinarily confined hole plasmon modes: when nonlocality issues. Nat. Commun. 13, 3105 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. A normal theoretical and experimental framework for nanoscale electromagnetism. Nature 576, 248–252 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinev, I. S. et al. Mapping plasmonic topological states on the nanoscale. Nanoscale 7, 11904–11908 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Q. et al. Close to-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21, 9270–9278 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moritake, Y., Ono, M. & Notomi, M. Far-field optical imaging of topological edge states in zigzag plasmonic chains. Nanophotonics 11, 2183–2189 (2022).

    Article 

    Google Scholar
     

  • Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Infrared nanoscopy of dirac plasmons on the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woessner, A. et al. Extremely confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, G. X. et al. Basic limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, I.-H. H. et al. Picture polaritons in boron nitride for excessive polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. et al. Hyperbolic metamaterials: fusing synthetic buildings to pure 2D supplies. eLight 2, 1 (2022).

    Article 

    Google Scholar
     

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzig Sheinfux, H. et al. Excessive-quality nanocavities by means of multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheinfux, H. H. et al. Transverse hypercrystals shaped by periodically modulated phonon-polaritons. ACS Nano 17, 7377–7383 (2023).

    Article 

    Google Scholar
     

  • Rappoport, T. G., Bludov, Y. V., Koppens, F. H. L. & Peres, N. M. R. Topological graphene plasmons in a plasmonic realization of the Su–Schrieffer–Heeger mannequin. ACS Photonics 8, 1817–1823 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, M., Zhang, Z. Q. & Chan, C. T. Floor impedance and bulk band geometric phases in one-dimensional methods. Phys. Rev. X 4, 021017 (2014).


    Google Scholar
     

  • Geim, A. Okay. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richards, D., Zayats, A., Keilmann, F. & Hillenbrand, R. Close to-field microscopy by elastic mild scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 787–805 (2004).

    Article 

    Google Scholar
     

  • Orsini, L., Torre, I., Herzig-Sheinfux, H. & Koppens, F. H. L. Quantitative scattering idea of near-field response for 1D polaritonic buildings. Preprint at https://arxiv.org/abs/2307.11512v1 (2023).

  • Orsini, L. Close to-field experimental dataset for the Article “Deep Subwavelength Topological Edge State in a Hyperbolic Medium”. Zenodo https://doi.org/10.5281/zenodo.11992364 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *