Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
Mak, Ok. F. & Shan, J. Semiconductor moiré supplies. Nat. Nanotechnol. 17, 686–695 (2022).
Shi, L.-k, Ma, J. & Music, J. C. W. Gate-tunable flat bands in van der Waals patterned dielectric superlattices. 2D Mater. 7, 015028 (2019).
Larentis, S. et al. Giant efficient mass and interaction-enhanced Zeeman splitting of Ok-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).
Shi, Q. et al. Odd- and even-denominator fractional quantum Corridor states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).
Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Nature 600, 641–646 (2021).
Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).
Cai, J. et al. Signatures of fractional quantum anomalous Corridor states in twisted MoTe2. Nature 622, 63–68 (2023).
Zeng, Y. et al. Thermodynamic proof of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Park, H. et al. Commentary of fractionally quantized anomalous Corridor impact. Nature 622, 74–79 (2023).
Xu, F. et al. Commentary of integer and fractional quantum anomalous Corridor results in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Nguyen, P. X. et al. Good Coulomb drag in a dipolar excitonic insulator. Preprint at https://arxiv.org/abs/2309.14940 (2023).
Qi, R. et al. Good Coulomb drag and exciton transport in an excitonic insulator. Preprint at https://arxiv.org/abs/2309.15357 (2023).
Allain, A., Kang, J., Banerjee, Ok. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Wang, Y. & Chhowalla, M. Making clear electrical contacts on 2D transition metallic dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Movva, H. C. P. et al. Excessive-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).
Jung, Y. et al. Transferred through contacts as a platform for supreme two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).
Xu, S. et al. Common low-temperature ohmic contacts for quantum transport in transition metallic dichalcogenides. 2D Mater. 3, 021007 (2016).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Borah, A., Nipane, A., Choi, M. S., Hone, J. & Teherani, J. T. Low-resistance p-type ohmic contacts to ultrathin WSe2 through the use of a monolayer dopant. ACS Appl. Electron. Mater. 3, 2941–2947 (2021).
Cai, X. et al. Bridging the hole between atomically skinny semiconductors and metallic leads. Nat. Commun. 13, 1777 (2022).
Mashhadi, S. et al. Spin-split band hybridization in graphene proximitized with α-RuCl3 nanosheets. Nano Lett. 19, 4659–4665 (2019).
Rizzo, D. J. et al. Cost-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).
Wang, Y. et al. Modulation doping through a two-dimensional atomic crystalline acceptor. Nano Lett. 20, 8446–8452 (2020).
Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).
Cho, Y. et al. Modulation doping of single-layer semiconductors for improved contact at metallic interfaces. Nano Lett. 22, 9700–9706 (2022).
Haratipour, N., Namgung, S., Oh, S.-H. & Koester, S. J. Basic limits on the subthreshold slope in Schottky supply/drain black phosphorus field-effect transistors. ACS Nano 10, 3791–3800 (2016).
Wang, J. et al. Transferred metallic gate to 2D semiconductors for sub-1 V operation and close to supreme subthreshold slope. Sci. Adv. 7, eabf8744 (2021).
Li, S. S. (ed.) Semiconductor Bodily Electronics (Springer, 2006).
Huang, Y., Shklovskii, B. I. & Zudov, M. A. Scattering mechanisms in state-of-the-art GaAs/AlGaAs quantum wells. Phys. Rev. Mater. 6, L061001 (2022).
Joe, A. Y. et al. Transport examine of charge-carrier scattering in monolayer WSe2. Phys. Rev. Lett. 132, 056303 (2024).
Ma, N. & Jena, D. Cost scattering and mobility in atomically skinny semiconductors. Phys. Rev. X 4, 011043 (2014).
Shih, E.-M. et al. Spin-selective magneto-conductivity in WSe2. Preprint at https://arxiv.org/abs/2307.00446 (2023).
Movva, H. C. P. Magnetotransport Research of Tungsten Diselenide Holes. PhD thesis, The Univ. of Texas at Austin (2018).
Kamburov, D., Baldwin, Ok. W., West, Ok. W., Shayegan, M. & Pfeiffer, L. N. Interaction between quantum properly width and interface roughness for electron transport mobility in GaAs quantum wells. Appl. Phys. Lett. 109, 232105 (2016).
Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Dysfunction in van der Waals heterostructures of 2D supplies. Nat. Mater. 18, 541–549 (2019).
Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau degree degeneracy, efficient mass, and detrimental compressibility. Phys. Rev. Lett. 116, 086601 (2016).
Chung, Y. J. et al. Extremely-high-quality two-dimensional electron methods. Nat. Mater. 20, 632–637 (2021).
Chung, Y. J. et al. Document-quality GaAs two-dimensional gap methods. Phys. Rev. Mater. 6, 034005 (2022).
Falson, J. & Kawasaki, M. A assessment of the quantum Corridor results in MgZnO/ZnO heterostructures. Rep. Prog. Phys. 81, 056501 (2018).
Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D’Iorio, M. Doable metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).
Chung, Y. J. et al. Multivalley two-dimensional electron system in an AlAs quantum properly with mobility exceeding 2 × 106 cm2 V−1 s−1. Phys. Rev. Mater. 2, 071001 (2018).
Falson, J. et al. Competing correlated states across the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).
Ahn, S. & Das Sarma, S. Density-tuned efficient metal-insulator transitions in two-dimensional semiconductor layers: Anderson localization or Wigner crystallization. Phys. Rev. B 107, 195435 (2023).
Drummond, N. D. & Wants, R. J. Part diagram of the low-density two-dimensional homogeneous electron gasoline. Phys. Rev. Lett. 102, 126402 (2009).
Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).
Andrei, E. Y. et al. Commentary of a magnetically induced Wigner strong. Phys. Rev. Lett. 60, 2765–2768 (1988).
Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
Polshyn, H. et al. Quantitative transport measurements of fractional quantum Corridor vitality gaps in edgeless graphene gadgets. Phys. Rev. Lett. 121, 226801 (2018).
Schulze-Wischeler, F., Mariani, E., Hohls, F. & Haug, R. J. Direct measurement of the g issue of composite fermions. Phys. Rev. Lett. 92, 156401 (2004).
Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Pack, J. Information associated to ‘Cost-transfer contacts for the measurement of correlated states in monolayer WSe2’. Zenodo https://doi.org/10.5281/zenodo.10866111 (2024).