
Stretchable show supplies, that are gaining traction within the next-generation show market, have the benefit of having the ability to stretch and bend freely, however the limitations of present supplies have resulted in distorted screens and poor match.
Basic elastomeric substrates are vulnerable to display distortion as a result of “Poisson’s ratio” phenomenon, through which stretching in a single course causes the display to shrink within the vertical course. Particularly, electronics which can be in shut contact with the pores and skin, corresponding to wearable units, are liable to wrinkling or pulling on the pores and skin throughout stretching and shrinking, leading to poor match and efficiency.
A analysis crew led by Dr. Jeong Gon Son of the Korea Institute of Science and Expertise (KIST) and Professor Yongtaek Hong of Seoul Nationwide College have developed a nanostructure-aligned stretchable substrate that dramatically lowers the Poisson’s ratio. The work is revealed within the journal Superior Supplies.
The analysis is notable for its means to cut back the Poisson’s ratio whereas sustaining transparency, fixing the issues of display distortion and lightweight scattering on the similar time.
The researchers achieved this by combining two key concepts. Within the first, they utilized block copolymers, that are polymer blocks linked collectively to align the interior nanostructures. The block copolymer (SIBS) consists of a stiff polystyrene (PS) and a softer polybutylene (PIB), which will be organized in a single course to maximise the distinction in elasticity between the parallel and perpendicular instructions to cut back shrinkage.

Whereas standard elastomers have a Poisson’s ratio of 0.4 to 0.5, the researchers have lowered it to a Poisson’s ratio of 0.07 or much less, which implies that there’s virtually no shrinkage perpendicular to the substrate, even within the stretching course, and display distortion is drastically lowered.
The second concept was to introduce a shear-rolling course of to align the nanostructures evenly throughout the substrate. It makes use of pace variations between rollers and phases to use a uniform shear pressure at excessive temperatures. This course of allowed the nanostructures to be reliably aligned on thick substrates with out compromising transparency.
In experiments, the researchers discovered that there was little longitudinal shrinkage, even when the substrate was stretched by greater than 50% within the vertical course.
The researchers utilized the developed substrate to an actual gadget and noticed adjustments within the pixel association. The traditional elastomeric substrate, when stretched by 50%, confirmed distortion with jagged spacing between pixels or caught vertical pixels.

The nanostructure-aligned substrate, alternatively, had a good association of pixels, leading to an unbroken picture and transparency with out wrinkles or tough surfaces.
The brand new stretchable substrate is anticipated for use as a core materials in numerous fields corresponding to next-generation shows, wearable electronics, and photo voltaic cells. As well as, the shear rolling course of used on this examine will be utilized to different block copolymers and polymer movies, making it an appropriate know-how for processing giant areas in a easy method.
“This analysis proposes a brand new methodology to develop a distortion-free and fully clear stretchable substrate by exactly controlling the nanostructure, and the shear-rolling course of to implement it may be simply utilized to mass manufacturing and industrialization,” stated Dr. Jeong Gon Son of KIST.
“We’re at present conducting analysis to understand an actual show gadget with no distortion even when tensile by transferring show light-emitting units utilizing this substrate.”
Extra data:
Jung Hur et al, Totally Clear and Distortion‐Free Monotonically Stretchable Substrate by Nanostructure Alignment, Superior Supplies (2024). DOI: 10.1002/adma.202414794
Quotation:
Clear stretchable substrate with out picture distortion reveals potential for next-generation shows (2025, February 28)
retrieved 3 March 2025
from https://phys.org/information/2025-02-transparent-stretchable-substrate-image-distortion.html
This doc is topic to copyright. Aside from any truthful dealing for the aim of personal examine or analysis, no
half could also be reproduced with out the written permission. The content material is supplied for data functions solely.