Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).
Klimov, V. I. et al. Optical achieve and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).
Fan, F. et al. Steady-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
Geiregat, P. et al. Steady-wave infrared optical achieve and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2018).
Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G. Answer-processed PbS quantum dot infrared laser with room-temperature tunable emission within the optical telecommunications window. Nat. Photonics 15, 738–742 (2021).
Ahn, N. et al. Electrically pushed amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).
Dang, C. et al. Pink, inexperienced and blue lasing enabled by single-exciton achieve in colloidal quantum dot movies. Nat. Nanotechnol. 7, 335–339 (2012).
Tanghe, I. et al. Optical achieve and lasing from bulk cadmium sulfide nanocrystals by bandgap renormalization. Nat. Nanotechnol. 18, 1423–1429 (2023).
Schäfer, J. et al. Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008).
Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).
Kazes, M., Lewis, D. Y. & Banin, U. Technique for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity. Adv. Funct. Mater. 14, 957–962 (2004).
Wang, Y. et al. Blue liquid lasers from resolution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv. Mater. 27, 169–175 (2015).
Duarte, F. J. & Hillman, L. W. Dye Laser Ideas: With Purposes (Educational Press, 1990).
Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media utilizing optofluidics. Nat. Photonics 5, 598–604 (2011).
Jelínková, H. Lasers for Medical Purposes: Diagnostics, Remedy and Surgical procedure (Elsevier, 2013).
Liu, Y., Li, Y., Gao, Okay., Zhu, J. & Wu, Okay. Sub-single-exciton optical achieve in lead halide perovskite quantum dots revealed by exciton polarization spectroscopy. J. Am. Chem. Soc. 145, 25864–25873 (2023).
Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Achieve management in semiconductor quantum dots through state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).
Wu, Okay., Park, Y.-S., Lim, J. & Klimov, V. I. In the direction of zero-threshold optical achieve utilizing charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).
Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).
Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger charges in semiconductor quantum dots. Science 287, 1011–1013 (2000).
Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).
Kambhampati, P., Mack, T. & Jethi, L. Understanding and exploiting the interface of semiconductor nanocrystals for mild emissive purposes. ACS Photonics 4, 412–423 (2017).
Schäfer, F. P., Schmidt, W. & Volze, J. Natural dye resolution laser. Appl. Phys. Lett. 9, 306–309 (1966).
Peterson, O. G., Tuccio, S. A. & Snavely, B. B. CW operation of an natural dye resolution laser. Appl. Phys. Lett. 17, 245–247 (1970).
Soffer, B. H. & McFarland, B. B. Constantly tunable, slender‐band natural dye lasers. Appl. Phys. Lett. 10, 266–267 (2004).
Shank, C. V. Physics of dye lasers. Rev. Mod. Phys. 47, 649–657 (1975).
Kato, Okay. 3547-Å pumped high-power dye laser within the blue and violet. IEEE J. Quantum Electron. 11, 373–374 (1975).
Shen, J., Wang, W. & Zhang, S. Amplification traits of a Coumarin 460-based tunable amplifier. IEEE Photon. J. 12, 1–8 (2020).
Azuma, Okay., Nakagawa, O., Segawa, Y., Aoyagi, Y. & Namba, S. A tunable picosecond UV dye laser pumped by the third harmonic of a Nd:YAG laser. Jpn J. Appl. Phys. 18, 209 (1979).
Wang, S. et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by successfully suppressing auger recombination. Adv. Choose. Mater. 9, 2100068 (2021).
Chan, Y. et al. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86, 073102 (2005).
Wang, Y., Li, X., Nalla, V., Zeng, H. & Solar, H. Answer-processed low threshold vertical cavity floor emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017).
Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).
Wang, L. et al. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10, 3248–3253 (2019).
Kim, T. et al. Environment friendly and secure blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).
Gao, M. et al. Bulk-like ZnSe quantum dots enabling environment friendly ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).
Wang, A. et al. Vibrant, environment friendly, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015).
Deng, X., Zhang, F., Zhang, Y. & Shen, H. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: synthesis and light-emitting purposes. J. Mater. Chem. C 11, 14495–14514 (2023).
Huang, Z. et al. Broadband tunable optical achieve from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 23, 4032–4038 (2023).
Huang, Z. et al. Deciphering ultrafast provider dynamics of eco-friendly ZnSeTe-based quantum dots: towards high-quality blue–inexperienced emitters. J. Phys. Chem. Lett. 12, 11931–11938 (2021).
Wei, H. et al. Blue lasing from heavy-metal-free colloidal quantum dots. Laser Photonics Rev. 17, 2200557 (2023).
Kozlov, O. V. et al. Sub–single-exciton lasing utilizing charged quantum dots coupled to a distributed suggestions cavity. Science 365, 672–675 (2019).
Ji, B., Koley, S., Slobodkin, I., Remennik, S. & Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties by thermodynamic shell development. Nano Lett. 20, 2387–2395 (2020).
García-Santamaría, F. et al. Suppressed Auger recombination in ‘big’ nanocrystals boosts optical achieve efficiency. Nano Lett. 9, 3482–3488 (2009).
Lim, J., Park, Y.-S. & Klimov, V. I. Optical achieve in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).
Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined constructions. Nano Lett. 10, 313–317 (2009).
Lengthy, Z. et al. The pressure results and interfacial defects of huge ZnSe/ZnS core/shell nanocrystals. Small 20, 2306602 (2024).
Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impression of core/shell sizes on the optical achieve traits of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).
Rinke, M. & Güsten, H. Optische Aufheller als Laserfarbstoffe. Ber. Bunsenges. Phys. Chem. 90, 439–444 (1986).
Htoon, H., Hollingworth, J., Malko, A., Dickerson, R. & Klimov, V. Gentle amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776 (2003).
Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent system. Adv. Mater. 35, 2206613 (2023).
Casperson, L. W. Threshold traits of mirrorless lasers. J. Appl. Phys. 48, 256–262 (1977).
Jones, M., Nedeljkovic, J., Ellingson, R. J., Nozik, A. J. & Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot options. J. Phys. Chem. B 107, 11346–11352 (2003).
Hines, M. A. & Guyot-Sionnest, P. Vibrant UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).
Lin, S. et al. Floor and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 13, 824–831 (2020).
Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as vivid, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).
Wu, Okay. Figures for “Blue laser utilizing low-toxicity quantum dots in liquids”. figshare https://doi.org/10.6084/m9.figshare.26763205 (2024).