Biomimetic nanocarriers in most cancers remedy: primarily based on intercellular and cell-tumor microenvironment communication | Journal of Nanobiotechnology

Biomimetic nanocarriers in most cancers remedy: primarily based on intercellular and cell-tumor microenvironment communication | Journal of Nanobiotechnology


  • Stone JB, DeAngelis LM. Most cancers-treatment-induced neurotoxicity—deal with newer therapies. Nat Critiques Clin Oncol. 2015;13:92–105.

    Article 

    Google Scholar
     

  • Xia Y, Solar M, Huang H, Jin W-L. Drug repurposing for most cancers remedy. Sign Transduct Goal Remedy, 9 (2024).

  • Jiang Y, Chen H, Lin T, Zhang C, Shen J, Chen J, Zhao Y, Xu W, Wang G, Huang P. Ultrasound-activated prodrug-loaded liposome for environment friendly most cancers concentrating on remedy with out chemotherapy-induced unintended effects. J Nanobiotechnol, 22 (2024).

  • Huang G, Liu L, Pan H, Cai L. Biomimetic energetic supplies guided immunogenic cell demise for enhanced Most cancers Immunotherapy. Small Strategies, 7 (2022).

  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in most cancers. Nature. 2019;575:299–309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor concentrating on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10:7921–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soprano E, Polo E, Pelaz B. P. Del Pino, Biomimetic cell-derived nanocarriers in most cancers analysis. J Nanobiotechnol, 20 (2022).

  • Lee JY, Vyas CK, Kim GG, Choi PS, Hur MG, Yang SD, Kong YB, Lee EJ, Park JH. Crimson blood cell membrane bioengineered Zr-89 Labelled Hole Mesoporous silica Nanosphere for overcoming phagocytosis. Sci Rep, 9 (2019).

  • Cui Y, Wang D, Xie M. Tumor-derived extracellular vesicles promote activation of Carcinoma-Related fibroblasts and facilitate Invasion and Metastasis of Ovarian Most cancers by carrying miR-630. Entrance Cell Dev Biology, 9 (2021).

  • Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, Kharaziha P. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis most cancers remedy. J Cell Physiol. 2019;234:16885–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, He X, Zhong X, Li G, Chen Z, Li D. Correction to: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to advertise liver metastasis of colorectal most cancers. J Hematol Oncol, 14 (2021).

  • Choo YW, Kang M, Kim HY, Han J, Kang S, Lee J-R, Jeong G-J, Kwon SP, Music SY, Go S, Jung M, Hong J, Kim B-S. M1 macrophage-derived nanovesicles potentiate the Anticancer efficacy of Immune Checkpoint inhibitors. ACS Nano. 2018;12:8977–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi Y, Zhang L, Li R, Zhao Y, Chen H, Li J, Yao H, Li L. Examine on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic most cancers remedy. Artif Cells Nanomed Biotechnol. 2023;51:532–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang L, Rong Y, Tang X, Yi Ok, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C, Wang F. Engineered exosomes as an in situ DC-primed vaccine to spice up antitumor immunity in breast most cancers. Mol Most cancers, 21 (2022).

  • Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Supply methods primarily based on Crimson Blood cells and their membrane-derived nanoparticles. ACS Nano. 2023;17:5187–210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Pure cell primarily based biomimetic mobile transformers for focused remedy of digestive system most cancers. Theranostics. 2022;12:7080–107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gundersen SI, Palmer AF. Hemoglobin-based oxygen provider enhanced tumor oxygenation: a novel technique for most cancers remedy. Biotechnol Prog. 2008;24:1353–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donohoe C, Senge MO, Arnaut LG. L.C. Gomes-da-Silva, Cell demise in photodynamic remedy: from oxidative stress to anti-tumor immunity, Biochimica et Biophysica Acta (BBA) – opinions on Most cancers, 1872 (2019).

  • Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai Ok. Rising Sonodynamic Remedy-Based mostly Nanomedicines for Most cancers Immunotherapy, Superior Science, 10 (2022).

  • Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q. Crimson blood cell-mimicking Micromotor for energetic photodynamic Most cancers remedy. ACS Appl Mater Interfaces. 2019;11:23392–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhang J, Ding L, Ni W, Yuan J, Xiao H, Zhang J. RBC-derived nanosystem with enhanced ferroptosis triggered by oxygen-boosted phototherapy for synergized tumor therapy. Biomaterials Sci. 2021;9:7228–36.

    Article 
    CAS 

    Google Scholar
     

  • Zhou A, Fang T, Chen Ok, Xu Y, Chen Z, Ning X. Biomimetic Activator of Sonodynamic Ferroptosis Amplifies Inherent Peroxidation for Enhancing the Therapy of Breast Most cancers, Small, 18 (2022).

  • Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H. An injectable nanoparticle generator enhances supply of most cancers therapeutics. Nat Biotechnol. 2016;34:414–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang N, Li J, Wang J, Nie D, Jiang X, Zhuo Y, Yu M. Form-directed drug launch and transport of erythrocyte-like nanodisks increase chemotherapy. J Managed Launch. 2022;350:886–97.

    Article 
    CAS 

    Google Scholar
     

  • Noji S, Taniguchi S, Kon H. An EPR research on erythrocyte deformability. Prog Biophys Mol Biol. 1991;55:85–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bremmell KE, Evans A, Prestidge CA, Biointerfaces. 50 (2006) 43–8.

  • Miao Y, Yang Y, Guo L, Chen M, Zhou X, Zhao Y, Nie D, Gan Y, Zhang X. Cell membrane-camouflaged nanocarriers with Biomimetic Deformability of erythrocytes for Ultralong circulation and enhanced Most cancers Remedy. ACS Nano. 2022;16:6527–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thon JN, Italiano JE. Platelets: Manufacturing, Morphology and Ultrastructure, Antiplatelet Agents2012, pp. 3–22.

  • Franco AT, Corken A, Ware J. Platelets on the interface of thrombosis, irritation, and most cancers. Blood. 2015;126:582–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Q, Ji T, Tang X, Guo W. The function of tumor-platelet interaction and micro tumor thrombi throughout hematogenous tumor metastasis. Cell Oncol. 2023;46:521–32.

    Article 

    Google Scholar
     

  • Samanta D, Almo SC. Nectin household of cell-adhesion molecules: structural and molecular elements of operate and specificity. Cell Mol Life Sci. 2014;72:645–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin α6β1 controls lung metastasis by way of direct binding to most cancers cell–derived ADAM9. JCI Perception, 1 (2016).

  • McCarty OJ, Zhao Y, Andrew N, Machesky LM, Staunton D, Frampton J, Watson SP. Analysis of the function of platelet integrins in fibronectin-dependent spreading and adhesion. J Thromb Haemostasis: JTH. 2004;2:1823–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartolomé RA, Robles J, Martin-Regalado Á, Pintado‐Berninches L, Burdiel M, Jaén M, Aizpurúa C, Imbaud JI, Casal JI. CDH6‐activated αIIbβ3 crosstalks with α2β1 to set off mobile adhesion and invasion in metastatic ovarian and renal cancers. Mol Oncol. 2021;15:1849–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama T, Saito R, Furuya S, Shoda Ok, Maruyma S, Takiguchi Ok, Shiraishi Ok, Akaike H, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Shinmori H, Yamamoto M, Nomura S, Tsukamoto T, Suzuki–Inoue Ok, Ichikawa D. Inhibition of most cancers cell–platelet adhesion as a promising therapeutic goal for stopping peritoneal dissemination of gastric most cancers. Oncol Lett, 26 (2023).

  • Wang X, Liu B, Xu M, Jiang Y, Zhou J, Yang J, Gu H, Ruan C, Wu J, Zhao Y. Blocking podoplanin inhibits platelet activation and reduces cancer-associated venous thrombosis. Thromb Res. 2021;200:72–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves CS, Burdick MM, Thomas SN, Pawar P, Konstantopoulos Ok. The twin function of CD44 as a practical P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am J Physiology-Cell Physiol. 2008;294:C907–16.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Fu J, Wang X, Chen Q, Zhang W, Cao Y, Ran H. Biomimetic nanoplatelets as a focused drug supply platform for breast Most cancers theranostics. ACS Appl Mater Interfaces. 2021;13:3605–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo H, Tao J, Shi H, He J, Zhou Z, Zhang C. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic remedy and photothermal remedy. Acta Biomater. 2018;80:296–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, Previti M, Zhou J, Gao W, Bui JD, Zhang L, Fang RH, Zhang J. Intratumoral immunotherapy utilizing platelet-cloaked nanoparticles enhances antitumor immunity in strong tumors. Nat Commun, 12 (2021).

  • Uslu D, Abas BI, Demirbolat GM, Cevik O. Impact of platelet exosomes loaded with doxorubicin as a focused remedy on triple-negative breast most cancers cells. Molecular Range; 2022.

  • Antwi-Baffour S, Adjei J, Aryeh C, Kyeremeh R, Kyei F, Seidu MA. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015;3:133–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular reworking in most cancers. Oncogene. 2013;33:3496–505.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Zhou S, Wu M, Qu R, Wang X, Chen W, Jiang Y, Jiang X, Zhen X. Gentle-Pushed Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Exact Tumor Vascular Disruption, Superior Supplies, 35 (2023).

  • Mereweather LJ, Constantinescu-Bercu A, Crawley JTB, Salles-Crawley II. Platelet–neutrophil crosstalk in thrombosis. Int J Mol Sci, 24 (2023).

  • Wang Y, Li W, Li Z, Mo F, Chen Y, Iida M, Wheeler DL, Hu Q. Lively recruitment of anti-PD-1-conjugated platelets by way of tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci Adv. 2023;9:eadf6854.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji J, Lian W, Zhang Y, Lin D, Wang J, Mo Y, Xu X, Hou C, Ma C, Zheng Y, Chen J, Zhong J, Zhang F, Ke Y, Chen H. Preoperative administration of a biomimetic platelet nanodrug enhances postoperative drug supply by bypassing thrombus. Int J Pharm, 636 (2023).

  • Mukherjee A, Bilecz AJ, Lengyel E. The adipocyte microenvironment and most cancers. Most cancers Metastasis Rev. 2022;41:575–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy AJ, Balaban S, Saunders DN. Adipocyte–tumor cell metabolic crosstalk in breast Most cancers. Traits Mol Med. 2017;23:381–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Gu Y, Qi F, Li A, Tang X, Li D, Wu X, Liu J. Engineering adipocytes for concentrating on supply of triptolide spinoff and Ce6 for malignant melanoma cytotoxic-PDT synergistic technique. Mater Design, 228 (2023).

  • Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, Abdou P, Li R, Bu L, Dotti G, Gu Z. Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumor-Related Macrophages for Most cancers Immunotherapy, Superior Science, 10 (2022).

  • Liang T, Wen D, Chen G, Chan A, Chen Z, Li H, Wang Z, Han X, Jiang L, Zhu JJ, Gu Z. Adipocyte-Derived Anticancer Lipid Droplets, Superior Supplies, 33 (2021).

  • Lu J, Liu Q-H, Wang F, Tan J-J, Deng Y-Q, Peng X-H, Liu X, Zhang B, Xu X, Li X-P. Exosomal miR-9 inhibits angiogenesis by concentrating on MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Experimental Clin Most cancers Res, 37 (2018).

  • Zhu J-Y, Zheng D-W, Zhang M-Ok, Yu W-Y, Qiu W-X, Hu J-J, Feng J, Zhang X-Z. Preferential Most cancers Cell Self-Recognition and Tumor Self-Concentrating on by Coating nanoparticles with Homotypic Most cancers cell membranes. Nano Lett. 2016;16:5895–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bose RJC, Paulmurugan R, Moon J, Lee S-H, Park H. Cell membrane-coated nanocarriers: the rising focused supply system for most cancers theranostics. Drug Discovery In the present day. 2018;23:891–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The function of adhesions between homologous most cancers cells in tumor development and focused remedy. Skilled Rev Anticancer Ther. 2017;17:517–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, He Z, Li Y, Xia Q, Li Z, Hou X, Feng N. Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells, Supplies Science and Engineering: C, 120 (2021).

  • Wen M, Zhao Y, Qiu P, Ren Q, Tao C, Chen Z, Yu N. Environment friendly sonodynamic ablation of deep-seated tumors by way of cancer-cell-membrane camouflaged biocompatible nanosonosensitizers. J Colloid Interface Sci. 2023;644:388–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang L, Zhao G, Zhang Y, Zhan F, Chen Z, He T, Cao Y, Hao L, Wang Z, Quan Z, Ou Y. Correction to: homologous concentrating on nanoparticles for enhanced PDT towards osteosarcoma HOS cells and the associated molecular mechanisms. J Nanobiotechnol, 20 (2022).

  • Zheng B, Liu Z, Wang H, Solar L, Lai W-F, Zhang H, Wang J, Liu Y, Qin X, Qi X, Wang S, Shen Y, Zhang P, Zhang D. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced concentrating on and mucus-penetrating effectivity for intravesical chemotherapy for bladder most cancers. J Managed Launch. 2022;351:834–46.

    Article 
    CAS 

    Google Scholar
     

  • Xie X, Hu X, Li Q, Yin M, Music H, Hu J, Wang L, Fan C, Chen N. Unraveling cell-type-specific focused supply of membrane-camouflaged nanoparticles with Plasmonic Imaging. Nano Lett. 2020;20:5228–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, Hu Q, Li B, Huang Y, Wang M, Shao S, Tang H, Yao Z, Ping Y, Liang T. A biomimetic nanodrug for enhanced chemotherapy of pancreatic tumors. J Managed Launch. 2023;354:835–50.

    Article 
    CAS 

    Google Scholar
     

  • Hu S, Ma J, Su C, Chen Y, Shu Y, Qi Z, Zhang B, Shi G, Zhang Y, Zhang Y, Huang A, Kuang Y, Cheng P. Engineered exosome-like nanovesicles suppress tumor progress by reprogramming tumor microenvironment and selling tumor ferroptosis. Acta Biomater. 2021;135:567–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the following era of promising cell-free vaccines in most cancers immunotherapy. OncoImmunology; 2020. p. 9.

  • Li X, Yu Y, Chen Q, Lin J, Zhu X, Liu X, He L, Chen T, He W. Engineering most cancers cell membrane-camouflaged metallic complicated for environment friendly concentrating on remedy of breast most cancers. J Nanobiotechnol, 20 (2022).

  • Wang D, Liu C, You S, Zhang Ok, Li M, Cao Y, Wang C, Dong H, Zhang X. Bacterial vesicle-Most cancers cell hybrid membrane-coated nanoparticles for Tumor Particular Immune activation and Photothermal Remedy. ACS Appl Mater Interfaces. 2020;12:41138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Yang Y, Chao Y, Xiao Z, Xu J, Wang C, Dong Z, Hou L, Li Q, Liu Z. Equipping Most cancers Cell membrane vesicles with practical DNA as a focused vaccine for Most cancers Immunotherapy. Nano Lett. 2021;21:9410–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Dong S, Wu J, Lv X, Yang N, Wei Q, Wang C, Chen J. Surgically Derived Most cancers Cell membrane-coated R837-Loaded poly(2-Oxazoline) nanoparticles for prostate Most cancers immunotherapy. ACS Appl Mater Interfaces. 2023;15:7878–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered cell-membrane‐coated nanoparticles immediately Current Tumor antigens to advertise anticancer immunity. Adv Mater, 32 (2020).

  • Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei MS, Khanlarkhani N, Khezri Z, Majidpoor J, Abouzaripour M, Habibi M, Kashani IR, Mortezaee Ok. Macrophage polarity in most cancers: a assessment. J Cell Biochem. 2018;120:2756–65.

    Article 
    PubMed 

    Google Scholar
     

  • Fan C-H, Lee Y-H, Ho Y-J, Wang C-H, Kang S-T. Yeh, macrophages as Drug Supply Carriers for Acoustic Section-Change droplets. Ultrasound Med Biol. 2018;44:1468–81.

    Article 
    PubMed 

    Google Scholar
     

  • Pang L, Zhu Y, Qin J, Zhao W, Wang J. Main M1 macrophages as multifunctional provider mixed with PLGA nanoparticle delivering anticancer drug for environment friendly glioma remedy. Drug Supply. 2018;25:1922–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Z, Solar X, Liu X, Shen Y, Wang Ok. Macrophages as an energetic tumour-targeting provider of SN38-nanoparticles for most cancers remedy. J Drug Goal. 2018;26:458–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Xiang HF, Zhang J, Massagué. Macrophage binding to receptor VCAM-1 transmits survival indicators in breast Most cancers cells that invade the lungs. Most cancers Cell. 2011;20:538–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo W, Chen W, Liu J, Huang S, Chen L, Liu Q, Liu N, Jin Q, Li Y, Wang P, Zhu X. Macrophage-mimic Hole Mesoporous Fe-Based mostly nanocatalysts for self-amplified chemodynamic remedy and metastasis inhibition by way of Tumor Microenvironment Transforming. ACS Appl Mater Interfaces. 2022;14:5053–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Entrance Physiol, 4 (2013).

  • Zhao H, Li L, Zhang J, Zheng C, Ding Ok, Xiao H, Wang L, Zhang Z. C–C chemokine Ligand 2 (CCL2) recruits macrophage-membrane-camouflaged Hole Bismuth Selenide nanoparticles to facilitate Photothermal Sensitivity and inhibit lung metastasis of breast Most cancers. ACS Appl Mater Interfaces. 2018;10:31124–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H, Park H-J, Chang HW, Again JH, Lee SJ, Park YE, Kim EH, Hong Y, Kwak G, Kwon IC, Lee JE, Lee YS, Kim SY, Yang Y, Kim SH. Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to battle most cancers. Bioactive Mater. 2023;25:527–40.

    Article 
    CAS 

    Google Scholar
     

  • Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu Ok, Xie HY. Responsive Exosome Nano-bioconjugates for synergistic Most cancers remedy. Angew Chem Int Ed. 2019;59:2018–22.

    Article 

    Google Scholar
     

  • Wang X, Ding H, Li Z, Peng Y, Tan H, Wang C, Huang G, Li W, Ma G, Wei W. Exploration and functionalization of M1-macrophage extracellular vesicles for efficient accumulation in glioblastoma and powerful synergistic therapeutic results. Sign Transduct Goal Remedy, 7 (2022).

  • Raulet DH, Vance RE. Self-tolerance of pure killer cells. Nat Rev Immunol. 2006;6:520–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Childs RW, Carlsten M. Therapeutic approaches to boost pure killer cell cytotoxicity towards most cancers: the pressure awakens. Nat Rev Drug Discovery. 2015;14:487–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered pure killer cells for most cancers immunotherapy. J Hematol Oncol. 2020;13:168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljunggren HG, Malmberg KJ. Prospects for using NK cells in immunotherapy of human most cancers. Nat Rev Immunol. 2007;7:329–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashkenazi A, Holland P, Eckhardt SG. Ligand-based concentrating on of apoptosis in Most cancers: the potential of recombinant human apoptosis Ligand 2/Tumor necrosis issue–associated apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol. 2008;26:3621–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, Podo F, Rivoltini L, Ramoni C, Fais S. Immune Surveillance Properties of Human NK Cell-Derived exosomes. J Immunol. 2012;189:2833–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • J.M.O. Liya Zhu 1, Prakash Gangadaran 1, Senthilkumar Kalimuthu 1, Se Hwan Baek 1, Shin Younger Jeong 1, Sang-Woo Lee 1, Jaetae Lee 1, Byeong-Cheol Ahn, Retraction: Concentrating on and Remedy of Glioblastoma in a mouse mannequin utilizing Exosomes Derived from Pure Killer cells. Entrance Immunol, 10 (2019).

  • Kim HY, Min H-Ok, Music H-W, Yoo A, Lee S, Kim Ok-P, Park J-O, Choi YH, Choi E. Supply of human pure killer cell-derived exosomes for liver most cancers remedy: an in vivo research in subcutaneous and orthotopic animal fashions. Drug Supply. 2022;29:2897–911.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neviani P, Smart PM, Murtadha M, Liu CW, Wu C-H, Jong AY, Seeger RC, Fabbri M. Pure killer–derived exosomal miR-186 inhibits Neuroblastoma Development and Immune escape mechanisms. Most cancers Res. 2019;79:1151–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Han J, Jia L, He J, Wang Y, Chen M, Liu X, He X. MiR-30c facilitates pure killer cell cytotoxicity to lung most cancers by way of concentrating on GALNT7. Genes Genomics. 2022;45:247–60.

    Article 
    PubMed 

    Google Scholar
     

  • Solar H, Shi Ok, Qi Ok, Kong H, Zhang J, Dai S, Ye W, Deng T, He Q, Zhou M. Pure killer cell-derived exosomal mir-3607-3p inhibits pancreatic Most cancers development by concentrating on IL-26. Entrance Immunol, 10 (2019).

  • Di Tempo AL, Pelosi A, Fiore PF, Tumino N, Besi F, Quatrini L, Santopolo S, Vacca P, Moretta L. MicroRNA evaluation of pure killer cell-derived exosomes: the microRNA let-7b-5p is enriched in exosomes and participates of their anti-tumor results towards pancreatic most cancers cells. OncoImmunology; 2023. p. 12.

  • Solar M, Li H, Feng B. miR-30e-3p in pure killer cell-derived exosomes inhibits the proliferation and invasion of human esophageal squamous carcinoma cells, Xi bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese language. J Cell Mol Immunol. 2023;39:295–302.


    Google Scholar
     

  • Huyan T, Gao L, Gao N, Wang C, Guo W, Zhou X, Li Q. Mir-221-5p and mir-186-5p are the vital bladder Most cancers Derived Exosomal miRNAs in Pure Killer Cell Dysfunction. Int J Mol Sci, 23 (2022).

  • Han D, Wang Ok, Zhang T, Gao GC, Xu H. Pure killer cell-derived exosome-entrapped paclitaxel can improve its anti-tumor impact. Eur Rev Med Pharmacol Sci. 2020;24:5703–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaban Ok, Hinterleitner C, Zhou Y, Salva E, Kantarci AG, Salih HR, Märklin M. Therapeutic silencing of BCL-2 utilizing NK Cell-Derived exosomes as a Novel Therapeutic Strategy in breast Most cancers. Cancers; 2021. p. 13.

  • Nie W, Fan W, Jiang A, Wu G, Liu H, Huang L-L, Xie H-Y. Pure killer cell-derived extracellular vesicle considerably enhanced adoptive T cell remedy towards strong tumors by way of versatilely immunomodulatory coordination. Sci China Chem. 2021;64:1999–2009.

    Article 
    CAS 

    Google Scholar
     

  • Dosil SG, Lopez-Cobo S, Rodriguez-Galan A, Fernandez-Delgado I, Ramirez-Huesca M, Milan-Rois P, Castellanos M, Somoza A, Gómez MJ, Reyburn HT, Vales-Gomez M, Sánchez F, Madrid L. Fernandez-Messina, Pure Killer (NK) cell-derived extracellular-vesicle shuttled microRNAs management T cell responses. Elife. 2022;29:76319.

    Article 

    Google Scholar
     

  • Hatami Z, Hashemi ZS, Eftekhary M, Amiri A, Karpisheh V, Nasrollahi Ok, Jafari R. Pure killer cell-derived exosomes for most cancers immunotherapy: modern therapeutics artwork. Most cancers Cell Int, 23 (2023).

  • Deng G, Solar Z, Li S, Peng X, Li W, Zhou L, Ma Y, Gong P, Cai L. Cell-membrane immunotherapy primarily based on pure killer cell membrane coated nanoparticles for the efficient inhibition of main and Abscopal Tumor Development. ACS Nano. 2018;12:12096–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mende I, Engleman EG. Breaking tolerance to tumors with dendritic cell-based immunotherapy. Quantity 1058. Annals of the New York Academy of Sciences; 2006. pp. 96–104.

  • Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2019;20:7–24.

    Article 
    PubMed 

    Google Scholar
     

  • Achmad H, Saleh Ibrahim Y, Mohammed Al-Taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis A, Ramírez-Coronel A, Turki Jalil H, Setia Budi W, Sawitri M, Elena Stanislavovna J, Gupta. Nanovaccines in most cancers immunotherapy: specializing in dendritic cell concentrating on. Int Immunopharmacol, 113 (2022).

  • Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse fashions. J Hepatol. 2017;67:739–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, Wang B, Dong Z, Wang W, Yin T, Wang Y. Tumor–Antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating Immune responses promote therapeutic efficacy towards Glioma. ACS Nano. 2023;17:2341–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan M, Liu H, Yan H, Che R, Jin Y, Yang X, Zhou X, Yang H, Ge Ok, Liang X-J, Zhang J, Li Z. A CAR T-inspiring platform primarily based on antibody-engineered exosomes from antigen-feeding dendritic cells for exact strong tumor remedy. Biomaterials, 282 (2022).

  • Harvey BT, Fu X, Li L, Neupane KR, Anand N, Kolesar JM. Richards, dendritic cell membrane-derived nanovesicles for focused T cell activation. ACS Omega. 2022;7:46222–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong S, Dong L, Cheng L. Neutrophils in most cancers carcinogenesis and metastasis. J Hematol Oncol, 14 (2021).

  • Wang H, Zang J, Zhao Z, Zhang Q, Chen S. The advances of Neutrophil-Derived Efficient Drug Supply methods: a key assessment of managing tumors and irritation. Int J Nanomed. 2021;16:7663–81.

    Article 
    CAS 

    Google Scholar
     

  • Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Gained Y-Y, Deng Q, Lian XL, Wang X, Eniola-Adefeso O, Bao X. CAR-neutrophil mediated supply of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun, 14 (2023).

  • Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, Tang L, Ma X, Zhang Y, Wang Y. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug supply system for focused glioma remedy. Biomaterials, 273 (2021).

  • Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in most cancers development as a promising therapeutic goal. Biomark Res, 11 (2023).

  • Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, Beisel C, Kurzeder C, Heinzelmann-Schwarz V, Rochlitz C, Weber WP, Beerenwinkel N, Aceto N. Neutrophils escort circulating tumour cells to allow cell cycle development. Nature. 2019;566:553–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Wang Q, Dai Y, Chen J, Wu T, Ju C, Xue L, Zhang C. New-generation cytopharmaceuticals with powerfully boosted extravasation for enhanced most cancers remedy. J Managed Launch: Official J Managed Launch Soc. 2023;359:116–31.

    Article 
    CAS 

    Google Scholar
     

  • Huang R, Fan D, Cheng H, Huo J, Wang S, He H, Zhang G. Multi-site assault, Neutrophil membrane-camouflaged nanomedicine with excessive drug loading for enhanced Most cancers Remedy and Metastasis Inhibition. Int J Nanomed. 2023;18:3359–75.

    Article 
    CAS 

    Google Scholar
     

  • Cui T, Zhang Y, Qin G, Wei Y, Yang J, Huang Y, Ren J, Qu X. A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for most cancers remedy. Nat Commun, 14 (2023).

  • Zhang J, Ji C, Zhang H, Shi H, Mao F, Qian H, Xu W, Wang D, Pan J, Fang X, Santos HA, Zhang X. Engineered neutrophil-derived exosome-like vesicles for focused most cancers remedy. Sci Adv. 2022;8:eabj8207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh DY, Fong L. Cytotoxic CD4(+) T cells in most cancers: increasing the immune effector toolbox. Immunity. 2021;54:2701–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8(+) T cell responses by way of main histocompatibility complicated cross-dressing. Immunity. 2022;55:982–e997988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu Ok, Li MQ. CD45RO(-)CD8(+) T cell-derived exosomes prohibit estrogen-driven endometrial most cancers improvement by way of the ERβ/miR-765/PLP2/Notch axis, Theranostics, 11 (2021) 5330–5345.

  • Correia DV, Lopes A, Silva-Santos B. Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology. 2013;2:e22892.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: pal or foe in most cancers improvement? J Translational Med. 2018;16:3.

    Article 
    CAS 

    Google Scholar
     

  • Liao W, Lin JX, Leonard WJ. Interleukin-2 on the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT. Rangel-Corona, Immune microenvironment of cervical most cancers and the function of IL-2 in tumor promotion. Cytokine. 2023;170:156334.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin S, Jung I, Jung D, Kim CS, Kang SM, Ryu S, Choi SJ, Noh S, Jeong J, Lee BY, Park JK, Shin J, Cho H, Heo JI, Jeong Y, Choi SH, Lee SY, Baek MC, Yea Ok. Novel antitumor therapeutic technique utilizing CD4(+) T cell-derived extracellular vesicles. Biomaterials. 2022;289:121765.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung D, Shin S, Kang SM, Jung I, Ryu S, Noh S, Choi SJ, Jeong J, Lee BY, Kim KS, Kim CS, Yoon JH, Lee CH, Bucher F, Kim YN, Im SH, Music BJ, Yea Ok, Baek MC. Reprogramming of T cell-derived small extracellular vesicles utilizing IL2 floor engineering induces potent anti-cancer results by way of miRNA supply. J Extracell Vesicles. 2022;11:e12287.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Jay SM, Wang Y, Wu SW, Xiao Z. IL-12 stimulates CTLs to secrete exosomes able to activating bystander CD8(+) T cells. Sci Rep. 2017;7:13365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensurado S, Blanco-Domínguez R, Silva-Santos B. The rising roles of γδ T cells in most cancers immunotherapy, Nature opinions. Clin Oncol. 2023;20:178–91.

    CAS 

    Google Scholar
     

  • Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WH, Wei H, Ng IO, Lee PP, Chan GC, Lau YL, Tu W. Exosomes derived from Vδ2-T cells management Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med, 12 (2020).

  • Qiu Y, Yang Y, Yang R, Liu C, Hsu JM, Jiang Z, Solar L, Wei Y, Li CW, Yu D, Zhang J, Hung MC. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast most cancers. Oncogene. 2021;40:4992–5001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Lu S, Liang X, Cao B, Wang S, Jiang J, Luo H, He S, Lang J, Zhu G. γδTDEs: an environment friendly supply system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma, Molecular remedy. Nucleic Acids. 2019;14:101–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salem HK, Thiemermann C. Mesenchymal stromal cells: present understanding and scientific standing, stem cells (Dayton, Ohio), 28 (2010) 585–96.

  • Momin EN, Vela G, Zaidi HA, Quiñones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells within the Therapy of Most cancers: Instructions for Future Analysis, Present immunology opinions, 6 (2010) 137–148.

  • Shojaei S, Moradi-Chaleshtori M, Paryan M, Koochaki A, Sharifi Ok, Mohammadi-Yeganeh S. Mesenchymal stem cell-derived exosomes enriched with miR-218 scale back the epithelial–mesenchymal transition and angiogenesis in triple-negative breast most cancers cells. Eur J Med Res, 28 (2023).

  • Wang J, Li M, Jin L, Guo P, Zhang Z, Zhanghuang C, Tan X, Mi T, Liu J, Wu X, Wei G, He D. Exosome mimetics derived from bone marrow mesenchymal stem cells ship doxorubicin to osteosarcoma in vitro and in vivo. Drug Supply. 2022;29:3291–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Y, Wang X, Li Y, Yan P, Zhang H. Human umbilical wire blood mesenchymal stem cells-derived exosomal microRNA-503-3p inhibits development of human endometrial most cancers cells by way of downregulating MEST. Most cancers Gene Ther. 2022;29:1130–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie L, Zhang C, Liu M, Huang J, Jin X, Zhu C, Lv M, Yang N, Chen S, Shao M, Du X, Feng G. Nucleus-targeting Manganese Dioxide nanoparticles coated with the human umbilical wire mesenchymal stem cell membrane for Most cancers Cell Remedy. ACS Appl Mater Interfaces. 2023;15:10541–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Impact of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor development versus tumor suppression. J Cell Physiol. 2019;234:3394–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in most cancers remedy. Int J Nanomed. 2019;14:2847–59.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: a tumor regulator and provider for focused tumor remedy. Most cancers Lett. 2022;526:29–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Sha H, Zhang L, Qian H, Chen F, Ding N, Ji L, Zhu A, Xu Q, Meng F, Yu L, Zhou Y, Liu B. Lipid insertion permits focused functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int J Nanomed. 2018;13:5347–59.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Ding Y, Tong Z, Qian X, Xu H, Lin F, Sheng G, Hong L, Wang W, Mao Z. pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration potential and enhanced most cancers thermal/chemodynamic remedy. Theranostics. 2022;12:4250–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung ME, Leonard JN. Stabilization of exosome-targeting peptides by way of engineered glycosylation. J Biol Chem. 2015;290:8166–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri E, Abnous Ok, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Focused doxorubicin-loaded mesenchymal stem cells-derived exosomes as a flexible platform for preventing towards colorectal most cancers. Life Sci. 2020;261:118369.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che J, Okeke CI, Hu ZB, Xu J. DSPE-PEG: a particular part in drug supply system. Curr Pharm Design. 2015;21:1598–605.

    Article 
    CAS 

    Google Scholar
     

  • Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Most cancers-Erythrocyte Hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian Most cancers. ACS Nano. 2021;15:19756–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Wan Z, Wang C, Lu F, Wei M, Wang D, Hao Q. Designer exosomes for focused and environment friendly ferroptosis induction in most cancers by way of chemo-photodynamic remedy. Theranostics. 2021;11:8185–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, Peng B, Wang W, Chan C, Ma V, Nguyen NTH, Kappei D, Nguyen XH, Cho WC, Shi J, Le MTN. Covalent conjugation of extracellular vesicles with peptides and nanobodies for focused therapeutic supply. J Extracell Vesicles. 2021;10:e12057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Xu J, Xu L, Solar X, Chen Q, Zhao Y, Peng R, Liu Z. Most cancers Cell membrane-coated adjuvant nanoparticles with mannose modification for efficient anticancer vaccination. ACS Nano. 2018;12:5121–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, Liang Q, Li J, Yu J, Huang G, Yan Y, Zhang Z, Zhang B, Gan L, Huang B, Yang X. Boosting anti-PD-1 remedy with metformin-loaded macrophage-derived microparticles. Nat Commun. 2021;12:440.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci Adv, 7 (2021).

  • Tiwari P, Yadav Ok, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Floor modification methods in translocating nano-vesicles throughout completely different obstacles and the function of bio-vesicles in bettering anticancer remedy. J Managed Launch: Official J Managed Launch Soc. 2023;363:290–348.

    Article 
    CAS 

    Google Scholar
     

  • Goulet DR, Atkins WM. Concerns for the design of antibody-based therapeutics. J Pharm Sci. 2020;109:74–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene supply by way of anti-HER2 antibody (trastuzumab, herceptin) conjugated polyethylenimine. J Managed Launch: Official J Managed Launch Soc. 2004;97:357–69.

    Article 
    CAS 

    Google Scholar
     

  • Hosseini NF, Amini R, Ramezani M, Saidijam M, Hashemi SM, Najafi R. AS1411 aptamer-functionalized exosomes within the focused supply of doxorubicin in preventing colorectal most cancers. Quantity 155. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie; 2022. p. 113690.

  • Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Biomimetic nanoerythrosome-coated Aptamer-DNA Tetrahedron/Maytansine conjugates: pH-Responsive and focused cytotoxicity for HER2-Constructive breast Most cancers, Superior supplies (Deerfield Seaside, Fla.), 34 (2022) e2109609.

  • Taghavi S, Tabasi H, Zahiri M, Abnous Ok, Mohammad Taghdisi S, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Floor engineering of hole gold nanoparticle with mesenchymal stem cell membrane and MUC-1 aptamer for focused theranostic software towards metastatic breast most cancers. Eur J Pharm Biopharmaceutics: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e V. 2023;187:76–86.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic acid-modified erythrocyte membrane loading twin drug for focused and Chemo-Photothermal Synergistic Most cancers Remedy. Mol Pharm. 2021;18:386–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo L, Zeng F, Xie J, Fan J, Xiao S, Wang Z, Xie H, Liu B. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal remedy of cervical most cancers. J Mater Chem B. 2020;8:4080–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng C, Xiong Z, Wang C, Xiao W, Xiao H, Xie Ok, Chen Ok, Liang H, Zhang X, Yang H. Folic acid-modified Exosome-PH20 enhances the effectivity of remedy by way of modulation of the tumor microenvironment and immediately inhibits tumor cell metastasis. Bioactive Mater. 2021;6:963–74.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Shi Y, Xue L, Liang Y, Shen J, Wang J, Wu M, Chen H, Kong M. Glucose-decorated engineering platelets for energetic and exact tumor-targeted drug supply. Biomaterials Sci. 2023;11:3965–75.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Gong L, Lin H, Yao S, Yin Y, Zhou Z, Shi J, Wu Z, Huang Z. Hyaluronic acid-coated bovine milk exosomes for reaching tumor-specific intracellular supply of miRNA-204. Cells; 2022. p. 11.

  • Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. Nanoscale. 2023;15:9457–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon J, Le XT, Kim J, Lee H, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Macrophage-reprogramming upconverting nanoparticles for enhanced TAM-mediated antitumor remedy of hypoxic breast most cancers. J Managed Launch: Official J Managed Launch Soc. 2023;360:482–95.

    Article 
    CAS 

    Google Scholar
     

  • Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-membrane-decorated prussian Blue for Efficient Most cancers Immunotherapy by way of Tumor-Related macrophages polarization and Hypoxia Reduction, Superior supplies (Deerfield Seaside, Fla.), 34 (2022) e2200389.

  • Ellipilli S, Wang H, Binzel DW, Shu D, Guo P. Ligand-displaying-exosomes utilizing RNA nanotechnology for focused supply of multi-specific medicine for liver most cancers regression, Nanomedicine: nanotechnology, biology, and drugs, 50 (2023) 102667.

  • Xu H, Liao C, Liang S, Ye BC. A novel peptide-equipped exosomes platform for supply of antisense oligonucleotides. ACS Appl Mater Interfaces. 2021;13:10760–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Z, Zhai Y, Hao Y, Wang Q, Han F, Zheng W, Hong J, Cui L, Jin W, Ma S, Yang L, Cheng G. Particular anti-glioma targeted-delivery technique of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides. J Extracell Vesicles. 2022;11:e12255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nica V, Marino A, Pucci C, Şen Ö, Emanet M, De Pasquale D, Carmignani A, Petretto A, Bartolucci M, Lauciello S, Brescia R, de Boni F, Prato M, Marras S, Drago F, Hammad M, Segets D, Ciofani G. Cell-membrane-coated and cell-penetrating peptide-conjugated trimagnetic nanoparticles for focused magnetic hyperthermia of prostate Most cancers cells. ACS Appl Mater Interfaces. 2023;15:30008–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ji Y, Hu N, Yu Q, Zhang X, Li J, Wu F, Xu H, Tang Q, Li X. Ferroptosis-induced anticancer impact of resveratrol with a biomimetic nano-delivery system in colorectal most cancers therapy. Asian J Pharm Sci. 2022;17:751–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Guo H, Jing D, Zhang Z, Zhang Z, Pu F, Yang W, Jin X, Huang X, Shao Z. Focused supply of PD-L1-Derived phosphorylation-mimicking peptides by Engineered Biomimetic nanovesicles to boost Osteosarcoma Therapy. Adv Healthc Mater. 2022;11:e2200955.

    Article 
    PubMed 

    Google Scholar
     

  • Ji Y, Zhang Z, Hou W, Wu M, Wu H, Hu N, Ni M, Tang C, Wu F, Xu H. Enhanced antitumor impact of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane. Eur J Pharmacol. 2022;931:175225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke R, Zhen X, Wang HS, Li L, Wang H, Wang S, Xie X. Floor functionalized biomimetic bioreactors allow the focused starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou M, Lai W, Li G, Wang F, Liu W, Liao J, Yang H, Liu Y, Zhang Q, Tang Q, Hu C, Huang J, Zhang R. Platelet membrane-coated and VAR2CSA Malaria protein-functionalized nanoparticles for focused therapy of main and metastatic Most cancers. ACS Appl Mater Interfaces. 2021;13:25635–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang Ok, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile method to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug supply. J Managed Launch: Official J Managed Launch Soc. 2017;264:102–11.

    Article 
    CAS 

    Google Scholar
     

  • Ismail M, Yang W, Li Y, Wang Y, He W, Wang J, Muhammad P, Chaston TB, Rehman FU, Zheng M, Lovejoy DB, Shi B. Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma leading to potent progress inhibition. Biomaterials. 2022;289:121760.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Deng J, Yao X, He Y, Li H, Jian Z, Tang Y, Zhang X, Zhang J, Dai H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnol. 2021;19:342.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Yang Q, Tang S, Jiang S, Zhao Q, Li J, Xu C, Liu J, Fu Y. CD38-targeted and erythrocyte membrane camouflaged nanodrug supply system for photothermal and chemotherapy in a number of myeloma. Int J Pharm. 2023;643:123241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Ok, Ren S, Zhang H, Cao Y, Zhao Y, Wang Y, Qiu W, Tian Y, Music L, Wang Z. Biomimetic Gold Nanorods modified with erythrocyte membranes for imaging-guided Photothermal/Gene synergistic remedy. ACS Appl Mater Interfaces. 2023;15:25285–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Li Z, Liu L, Li L, Zhang L, Wang Y, Zhao J. Self-Meeting Catalase Nanocomplex conveyed by bacterial vesicles for oxygenated photodynamic remedy and Tumor Immunotherapy. Int J Nanomed. 2022;17:1971–85.

    Article 

    Google Scholar
     

  • Li Y, Tian L, Zhao T, Zhang J. A nanotherapeutic system for gastric most cancers suppression by synergistic chemotherapy and immunotherapy primarily based on iPSCs and DCs exosomes, Most cancers immunology, immunotherapy. Quantity 72. CII; 2023. pp. 1673–83.

  • Pham TT, Chen H, Nguyen PHD, Jayasinghe MK, Le AH, Le MT. Endosomal escape of nucleic acids from extracellular vesicles mediates practical therapeutic supply. Pharmacol Res. 2023;188:106665.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng S, Xiao F, Chen M, Gao H. Tumor-microenvironment-responsive nanomedicine for enhanced Most cancers Immunotherapy, Superior science (Weinheim, Baden-Wurttemberg, Germany), 9 (2022) e2103836.

  • Boedtkjer E, Pedersen SF. The acidic Tumor Microenvironment as a driver of Most cancers. Annu Rev Physiol. 2020;82:103–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Wei L, Ma X, Wang J, Liang S, Chen Ok, Wu M, Niu L, Zhang Y. pH-sensitive tumor-tropism hybrid membrane-coated nanoparticles for reprogramming the tumor microenvironment and boosting the antitumor immunity. Acta Biomater. 2023;166:470–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Chu Z, Chen B, Ma Y, Xu L, Qian H, Yu Y. Most cancers cell membrane-coated upconversion nanoparticles/Zn(x)mn(1-x)S core-shell nanoparticles for focused photodynamic and chemodynamic remedy of pancreatic most cancers, supplies immediately. Bio. 2023;22:100765.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang WR, Wang Y, Lei Y, Zuo L, Jiang A, Wu G, Nie W, Huang LL, Xie HY. Phytochemical Engineered bacterial outer membrane vesicles for photodynamic results promoted Immunotherapy. Nano Lett. 2022;22:4491–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zhi S, Ou J, Gao J, Zheng L, Huang M, Du S, Shi L, Tu Y, Cheng Ok. Most cancers Cell membrane-coated nanoparticle co-loaded with photosensitizer and toll-like receptor 7 agonist for the enhancement of mixed Tumor Immunotherapy. ACS Nano. 2023;17:16620–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning S, Dai X, Tang W, Guo Q, Lyu M, Zhu D, Zhang W, Qian H, Yao X, Wang X. Most cancers cell membrane-coated C-TiO(2) hole nanoshells for mixed sonodynamic and hypoxia-activated chemotherapy. Acta Biomater. 2022;152:562–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan L, Cao Y, Cheng C, Tang R, Wu N, Zhou Y, Xiong X, He H, Lin X, Jiang Q, Wang X, Guo X, Wang D, Ran H, Ren J, Zhou Y, Hu Z, Li P. Biomimetic, pH-Responsive nanoplatforms for Most cancers Multimodal Imaging and Photothermal Immunotherapy. ACS Appl Mater Interfaces. 2023;15:1784–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Overview on Isolation, Characterization, Detection Strategies, and Various Functions, Analytical chemistry, 95 (2023) 16029–16048.

  • Hade MD, Suire CN, Suo Z. An efficient peptide-based platform for environment friendly Exosomal Loading and Mobile Supply of a microRNA. ACS Appl Mater Interfaces. 2023;15:3851–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Fernández J, Fuente M, Freire. Exosome-like methods: nanotechnology to beat challenges for focused most cancers therapies. Most cancers Lett. 2023;561:216151.

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *