Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for creating T cell-based therapies

Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for creating T cell-based therapies


  • Rosenberg, S. A. & Restifo, N. P. Adoptive cell switch as personalised immunotherapy for human most cancers. Science 348, 62–68 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of most cancers immunotherapy. Nat. Rev. Most cancers 16, 566–581 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kershaw, M. H., Westwood, J. A. & Darcy, P. Ok. Gene-engineered T cells for most cancers remedy. Nat. Rev. Most cancers 13, 525–541 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, L. et al. Trispecific antibodies improve the therapeutic efficacy of tumor-directed T cells by T cell receptor co-stimulation. Nat. Most cancers 1, 86–98 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hollyman, D. et al. Manufacturing validation of biologically useful T cells focused to CD19 antigen for autologous adoptive cell remedy. J. Immunother. 32, 169–180 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, A. S., Zhang, D. Ok. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells allow ex vivo growth of main T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Ok. Y., Cheung, A. S. & Mooney, D. J. Activation and growth of human T cells utilizing synthetic antigen-presenting cell scaffolds. Nat. Protoc. 15, 773–798 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fadel, T. R. et al. A carbon nanotube–polymer composite for T-cell remedy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, Ok.-H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Yokosuka, T. & Saito, T. Dynamic regulation of T-cell costimulation by TCR–CD28 microclusters. Immunol. Rev. 229, 27–40 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Keene, J. A. & Forman, J. Helper exercise is required for the in vivo technology of cytotoxic T lymphocytes. J. Exp. Med. 155, 768–782 (1982).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, W., Lin, J.-X. & Leonard, W. J. IL-2 household cytokines: new insights into the advanced roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillis, S. & Smith, Ok. A. Long run tradition of tumour-specific cytotoxic T cells. Nature 268, 154–156 (1977).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, Ok. A. Interleukin-2: inception, affect, and implications. Science 240, 1169–1176 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Abbas, A. Ok., Trotta, E., Simeonov, R. D., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, X. et al. Nano-graphene oxide for mobile imaging and drug supply. Nano Res. 1, 203–212 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Loftus, C., Saeed, M., Davis, D. M. & Dunlop, I. E. Activation of human pure killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett. 18, 3282–3289 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulin, P. et al. Superflexibility of graphene oxide. Proc. Natl Acad. Sci. USA 113, 11088–11093 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelhard, V. H., Strominger, J. L., Mescher, M. & Burakoff, S. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc. Natl Acad. Sci. 75, 5688–5691 (1978).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mescher, M. F. Floor contact necessities for activation of cytotoxic T lymphocytes. J. Immunol. 149, 2402–2405 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Hui, E. et al. T cell costimulatory receptor CD28 is a main goal for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative help for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Meuer, S. C. et al. Proof for the T3-associated 90K heterodimer because the T-cell antigen receptor. Nature 303, 808–810 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Bikoue, A. et al. Quantitative evaluation of leukocyte membrane antigen expression: regular grownup values. Cytometry 26, 137–147 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Deeg, J. et al. T cell activation is set by the variety of introduced antigens. Nano Lett. 13, 5619–5626 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. R., Tolbert, S. V. & Wen, F. Protein-scaffold directed nanoscale meeting of T cell ligands: synthetic antigen presentation with outlined valency, density, and ratio. ACS Synth. Biol. 7, 1629–1639 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Acuto, O., Mise-Omata, S., Mangino, G. & Michel, F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol. Rev. 192, 21–31 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Bashour, Ok. T. et al. Cross discuss between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol. Cell. Biol. 34, 955–964 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyman, O. & Sprent, J. The position of interleukin-2 throughout homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zeidan, N., Damen, H., Roy, D.-C. & Dave, V. P. Crucial position for TCR sign energy and MHC specificity in ThPOK-induced CD4 helper lineage alternative. J. Immunol. 202, 3211–3225 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Diez, A. et al. CD4 cells may be extra environment friendly at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S. et al. In vivo technology of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. J. Am. Soc. Gene Ther. 28, 1783–1794 (2020).

    Article 

    Google Scholar
     

  • Voss, S. D. et al. Serum ranges of the low-affinity interleukin-2 receptor molecule (TAC) throughout IL-2 remedy mirror systemic lymphoid mass activation. Most cancers Immunol. Immunother. 29, 261–269 (1989).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besser, M. J. et al. Modifying interleukin-2 concentrations throughout tradition improves perform of T cells for adoptive immunotherapy. Cytotherapy 11, 206–217 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Banerjee, A. et al. A reengineered frequent chain cytokine augments CD8+ T cell-dependent immunotherapy. JCI Perception 7, e158889 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hank, J. A. et al. Distinct medical and laboratory exercise of two recombinant interleukin-2 preparations. Clin. Most cancers Res. 5, 281–289 (1999).

    PubMed 

    Google Scholar
     

  • Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration of murine leukemia virus DNA will depend on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bukrinsky, M. I., Stanwick, T. L., Dempsey, M. P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 an infection. Science 254, 423–427 (1991).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallay, P., Swingler, S., Track, J., Bushman, F. & Trono, D. HIV nuclear import is ruled by the phosphotyrosine-mediated binding of matrix to the core area of integrase. Cell 83, 569–576 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Colombetti, S., Basso, V., Mueller, D. L. & Mondino, A. Extended TCR/CD28 engagement drives IL-2-independent T cell clonal growth by signaling mediated by the mammalian goal of rapamycin. J. Immunol. 176, 2730–2738 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Gett, A. V. & Hodgkin, P. D. A mobile calculus for sign integration by T cells. Nat. Immunol. 1, 239–244 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle management. Biochim. Biophys. Acta Gene Regul. Mech. 1849, 506–516 (2015).

    Article 

    Google Scholar
     

  • Yost, Ok. E. et al. Clonal substitute of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. iTALK: an R bundle to characterize and illustrate intercellular communication. Preprint at bioRxiv https://doi.org/10.1101/507871 (2019).

  • Elgueta, R. et al. Molecular mechanism and performance of CD40/CD40L engagement within the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Honey, Ok. CCL3 and CCL4 actively recruit CD8+ T cells. Nat. Rev. Immunol. 6, 427–427 (2006).

    Article 

    Google Scholar
     

  • Cheng, G., Yu, A. & Malek, T. R. T cell tolerance and the multi-functional position of IL-2R signaling in T regulatory cells. Immunol. Rev. 241, 63–76 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz, O. N. et al. Graphene oxide: a nonspecific enhancer of mobile development. ACS Nano 5, 8100–8107 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X. & Diniz da Costa, J. C. Structural and useful investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like response. Sci. Rep. 4, 4594 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabó, T., Tombácz, E., Illés, E. & Dékány, I. Enhanced acidity and pH-dependent floor cost characterization of successively oxidized graphite oxides. Carbon 44, 537–545 (2006).

    Article 

    Google Scholar
     

  • Dékány, I., Krüger-Grasser, R. & Weiss, A. Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym. Sci. 276, 570–576 (1998).

    Article 

    Google Scholar
     

  • Zhu, Y. et al. Improvement of hematopoietic stem cell-engineered invariant pure killer T cell remedy for most cancers. Cell Stem Cell 25, 542–557.e9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannoni, F. et al. Allelic exclusion and peripheral reconstitution by TCR transgenic T cells arising from transduced human hematopoietic stem/progenitor cells. Mol. Ther. 21, 1044–1054 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartier, N. et al. Hematopoietic stem cell gene remedy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Engels, B. et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum. Gene Ther. 14, 1155–1168 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, A. D. et al. Building and properties of retrovirus packaging cells based mostly on gibbon ape leukemia virus. J. Virol. 65, 2220–2224 (1991).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *