Yewdall, N. A., Mason, A. F. & Van Hest, J. C. M. The hallmarks of residing methods: in direction of creating synthetic cells. Interface Focus 8, 20180023 (2018).
Gánti, T. The Ideas of Life (Oxford Univ. Press, 2006).
Otrin, L. et al. Synthetic organelles for power regeneration. Adv. Biosys. 3, 1800323 (2019).
Staufer, O. et al. Constructing a neighborhood to engineer artificial cells and organelles from the bottom-up. eLife 10, e73556 (2021).
Schwille, P. et al. MaxSynBio: avenues in direction of creating cells from the underside up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).
Staufer, O. et al. Backside-up meeting of biomedical related totally artificial extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).
Choi, H.-J. & Montemagno, C. D. Synthetic organelle: ATP synthesis from mobile mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005).
Steinberg-Yfrach, G. et al. Gentle-driven manufacturing of ATP catalysed by F0F1-ATP synthase in a man-made photosynthetic membrane. Nature 392, 479–482 (1998).
Berhanu, S., Ueda, T. & Kuruma, Y. Synthetic photosynthetic cell producing power for protein synthesis. Nat. Commun. 10, 1325 (2019).
Lee, Okay. Y. et al. Photosynthetic synthetic organelles maintain and management ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).
Altamura, E. et al. Chromatophores effectively promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment synthetic cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).
Otrin, L. et al. Towards synthetic mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Lett. 17, 6816–6821 (2017).
Biner, O., Fedor, J. G., Yin, Z. & Hirst, J. Backside-up development of a minimal system for mobile respiration and power regeneration. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.0c00110 (2020).
Pols, T. et al. An artificial metabolic community for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).
Luo, S. et al. ATP manufacturing from electrical energy with a new-to-nature electrobiological module. Joule 7, 1745–1758 (2023).
Bailoni, E. et al. Minimal out-of-equilibrium metabolism for artificial cells: a membrane perspective. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.3c00062 (2023).
Sikkema, H. R., Gaastra, B. F., Pols, T. & Poolman, B. Cell fuelling and metabolic power conservation in artificial cells. ChemBioChem 20, 2581–2592 (2019).
Ma, B. C. et al. Polymer-based module for NAD+ regeneration with seen gentle. ChemBioChem 20, 2593–2596 (2019).
Partipilo, M. et al. Minimal pathway for the regeneration of redox cofactors. JACS Au 1, 2280–2293 (2021).
Rivas, G. & Minton, A. P. Macromolecular crowding in vitro, in vivo, and in between. Developments Biochem. Sci. 41, 970–981 (2016).
Andersen, D. G. et al. Chemical zymogens and transmembrane activation of transcription in artificial cells. Adv. Mater. 36, 2309385 (2024).
Buddingh, B. C., Elzinga, J. & Van Hest, J. C. M. Intercellular communication between synthetic cells by allosteric amplification of a molecular sign. Nat. Commun. 11, 1652 (2020).
Bailoni, E. & Poolman, B. ATP recycling fuels sustainable glycerol 3-phosphate formation in artificial cells fed by dynamic dialysis. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00075 (2022).
Bailoni, E. et al. Artificial vesicles for sustainable power recycling and supply of constructing blocks for lipid biosynthesis. ACS Synth. Biol. 13, 1549–1561 (2024).
Ruprecht, J. J. & Kunji, E. R. Structural adjustments within the transport cycle of the mitochondrial ADP/ATP provider. Curr. Opin. Struct. Biol. 57, 135–144 (2019).
King, M. S., Kerr, M., Crichton, P. G., Springett, R. & Kunji, E. R. S. Formation of a cytoplasmic salt bridge community within the matrix state is a basic step within the transport mechanism of the mitochondrial ADP/ATP provider. Biochim. Biophys. Acta 1857, 14–22 (2016).
Ruprecht, J. J. et al. The molecular mechanism of transport by the mitochondrial ADP/ATP provider. Cell 176, 435–447.e15 (2019).
Kunji, E. R. S. et al. The transport mechanism of the mitochondrial ADP/ATP provider. Biochim. Biophys. Acta 1863, 2379–2393 (2016).
Wagner, S., Bader, M. L., Drew, D. & De Gier, J.-W. Rationalizing membrane protein overexpression. Developments Biotechnol. 24, 364–371 (2006).
Geertsma, E. R., Nik Mahmood, N. A. B., Schuurman-Wolters, G. Okay. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator operate. Nat. Protoc. 3, 256–266 (2008).
Ruprecht, J. J. et al. Constructions of yeast mitochondrial ADP/ATP carriers assist a domain-based alternating-access transport mechanism. Proc. Natl Acad. Sci. USA 111, E426–34 (2014).
Funai, Okay., Summers, S. A. & Rutter, J. Reign within the membrane: how widespread lipids govern mitochondrial operate. Curr. Opin. Cell Biol. 63, 162–173 (2020).
Bamber, L., Harding, M., Butler, P. J. G. & Kunji, E. R. S. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc. Natl Acad. Sci. USA 103, 16224–16229 (2006).
Klingenberg, M. The ADP and ATP transport in mitochondria and its provider. Biochim. Biophys. Acta 1778, 1978–2021 (2008).
Pols, T., Singh, S., Deelman-Driessen, C., Gaastra, B. F. & Poolman, B. Enzymology of the pathway for ATP manufacturing by arginine breakdown. FEBS J. 288, 293–309 (2021).
Tantama, M., Martínez-François, J. R., Mongeon, R. & Yellen, G. Imaging power standing in stay cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).
Hoffmann, T. & Bremer, E. Guardians in a aggravating world: the Opu household of appropriate solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).
Biemans-Oldehinkel, E., Mahmood, N. A. B. N. & Poolman, B. A sensor for intracellular ionic energy. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006).
van der Heide, T. On the osmotic sign and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022–7032 (2001).
Patzlaff, J. S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003).
Biemans-Oldehinkel, E. On the function of the 2 extracytoplasmic substrate-binding domains within the ABC transporter OpuA. EMBO J. 22, 5983–5993 (2003).
Imran, A., Popescu, D. & Movileanu, L. Cyclic exercise of an osmotically harassed liposome in a finite hypotonic setting. Langmuir 36, 3659–3666 (2020).
Su, W.-C., Gettel, D. L., Chabanon, M., Rangamani, P. & Parikh, A. N. Pulsatile gating of large vesicles containing macromolecular crowding brokers induced by colligative nonideality. J. Am. Chem. Soc. 140, 691–699 (2018).
Sikkema, H. R. et al. Gating by ionic energy and security examine by cyclic-di-AMP within the ABC transporter OpuA. Sci. Adv. 6, eabd7697 (2020).
Van Den Noort, M., Drougkas, P., Paulino, C. & Poolman, B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently work together. eLife 12, RP90996 (2024).
Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stülke, J. A fragile connection: c-di-AMP impacts cell integrity by controlling osmolyte transport. Developments Microbiol. 26, 175–185 (2018).
Ji, Y., Chakraborty, T. & Wegner, S. V. Self-regulated and bidirectional communication in artificial cell communities. ACS Nano 17, 8992–9002 (2023).
Tang, T.-Y. D. et al. Gene-mediated chemical communication in artificial protocell communities. ACS Synth. Biol. 7, 339–346 (2018).
King, M. S. & Kunji, E. R. S. in Expression, Purification, and Structural Biology of Membrane Proteins Vol. 2127 (eds Perez, C. & Maier, T.) 47–61 (Springer US, 2020).