Artificial syntrophy for adenine nucleotide cross-feeding between metabolically energetic nanoreactors

Artificial syntrophy for adenine nucleotide cross-feeding between metabolically energetic nanoreactors


  • Yewdall, N. A., Mason, A. F. & Van Hest, J. C. M. The hallmarks of residing methods: in direction of creating synthetic cells. Interface Focus 8, 20180023 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gánti, T. The Ideas of Life (Oxford Univ. Press, 2006).

  • Otrin, L. et al. Synthetic organelles for power regeneration. Adv. Biosys. 3, 1800323 (2019).

    Article 

    Google Scholar
     

  • Staufer, O. et al. Constructing a neighborhood to engineer artificial cells and organelles from the bottom-up. eLife 10, e73556 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwille, P. et al. MaxSynBio: avenues in direction of creating cells from the underside up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Staufer, O. et al. Backside-up meeting of biomedical related totally artificial extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Choi, H.-J. & Montemagno, C. D. Synthetic organelle: ATP synthesis from mobile mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Steinberg-Yfrach, G. et al. Gentle-driven manufacturing of ATP catalysed by F0F1-ATP synthase in a man-made photosynthetic membrane. Nature 392, 479–482 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Berhanu, S., Ueda, T. & Kuruma, Y. Synthetic photosynthetic cell producing power for protein synthesis. Nat. Commun. 10, 1325 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Okay. Y. et al. Photosynthetic synthetic organelles maintain and management ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Altamura, E. et al. Chromatophores effectively promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment synthetic cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Otrin, L. et al. Towards synthetic mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Lett. 17, 6816–6821 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Biner, O., Fedor, J. G., Yin, Z. & Hirst, J. Backside-up development of a minimal system for mobile respiration and power regeneration. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.0c00110 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pols, T. et al. An artificial metabolic community for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, S. et al. ATP manufacturing from electrical energy with a new-to-nature electrobiological module. Joule 7, 1745–1758 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bailoni, E. et al. Minimal out-of-equilibrium metabolism for artificial cells: a membrane perspective. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.3c00062 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikkema, H. R., Gaastra, B. F., Pols, T. & Poolman, B. Cell fuelling and metabolic power conservation in artificial cells. ChemBioChem 20, 2581–2592 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, B. C. et al. Polymer-based module for NAD+ regeneration with seen gentle. ChemBioChem 20, 2593–2596 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Partipilo, M. et al. Minimal pathway for the regeneration of redox cofactors. JACS Au 1, 2280–2293 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rivas, G. & Minton, A. P. Macromolecular crowding in vitro, in vivo, and in between. Developments Biochem. Sci. 41, 970–981 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andersen, D. G. et al. Chemical zymogens and transmembrane activation of transcription in artificial cells. Adv. Mater. 36, 2309385 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Buddingh, B. C., Elzinga, J. & Van Hest, J. C. M. Intercellular communication between synthetic cells by allosteric amplification of a molecular sign. Nat. Commun. 11, 1652 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bailoni, E. & Poolman, B. ATP recycling fuels sustainable glycerol 3-phosphate formation in artificial cells fed by dynamic dialysis. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00075 (2022).

  • Bailoni, E. et al. Artificial vesicles for sustainable power recycling and supply of constructing blocks for lipid biosynthesis. ACS Synth. Biol. 13, 1549–1561 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruprecht, J. J. & Kunji, E. R. Structural adjustments within the transport cycle of the mitochondrial ADP/ATP provider. Curr. Opin. Struct. Biol. 57, 135–144 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • King, M. S., Kerr, M., Crichton, P. G., Springett, R. & Kunji, E. R. S. Formation of a cytoplasmic salt bridge community within the matrix state is a basic step within the transport mechanism of the mitochondrial ADP/ATP provider. Biochim. Biophys. Acta 1857, 14–22 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruprecht, J. J. et al. The molecular mechanism of transport by the mitochondrial ADP/ATP provider. Cell 176, 435–447.e15 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kunji, E. R. S. et al. The transport mechanism of the mitochondrial ADP/ATP provider. Biochim. Biophys. Acta 1863, 2379–2393 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wagner, S., Bader, M. L., Drew, D. & De Gier, J.-W. Rationalizing membrane protein overexpression. Developments Biotechnol. 24, 364–371 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Geertsma, E. R., Nik Mahmood, N. A. B., Schuurman-Wolters, G. Okay. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator operate. Nat. Protoc. 3, 256–266 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruprecht, J. J. et al. Constructions of yeast mitochondrial ADP/ATP carriers assist a domain-based alternating-access transport mechanism. Proc. Natl Acad. Sci. USA 111, E426–34 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Funai, Okay., Summers, S. A. & Rutter, J. Reign within the membrane: how widespread lipids govern mitochondrial operate. Curr. Opin. Cell Biol. 63, 162–173 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bamber, L., Harding, M., Butler, P. J. G. & Kunji, E. R. S. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc. Natl Acad. Sci. USA 103, 16224–16229 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Klingenberg, M. The ADP and ATP transport in mitochondria and its provider. Biochim. Biophys. Acta 1778, 1978–2021 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pols, T., Singh, S., Deelman-Driessen, C., Gaastra, B. F. & Poolman, B. Enzymology of the pathway for ATP manufacturing by arginine breakdown. FEBS J. 288, 293–309 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tantama, M., Martínez-François, J. R., Mongeon, R. & Yellen, G. Imaging power standing in stay cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hoffmann, T. & Bremer, E. Guardians in a aggravating world: the Opu household of appropriate solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Biemans-Oldehinkel, E., Mahmood, N. A. B. N. & Poolman, B. A sensor for intracellular ionic energy. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van der Heide, T. On the osmotic sign and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022–7032 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patzlaff, J. S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Biemans-Oldehinkel, E. On the function of the 2 extracytoplasmic substrate-binding domains within the ABC transporter OpuA. EMBO J. 22, 5983–5993 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Imran, A., Popescu, D. & Movileanu, L. Cyclic exercise of an osmotically harassed liposome in a finite hypotonic setting. Langmuir 36, 3659–3666 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Su, W.-C., Gettel, D. L., Chabanon, M., Rangamani, P. & Parikh, A. N. Pulsatile gating of large vesicles containing macromolecular crowding brokers induced by colligative nonideality. J. Am. Chem. Soc. 140, 691–699 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sikkema, H. R. et al. Gating by ionic energy and security examine by cyclic-di-AMP within the ABC transporter OpuA. Sci. Adv. 6, eabd7697 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van Den Noort, M., Drougkas, P., Paulino, C. & Poolman, B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently work together. eLife 12, RP90996 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stülke, J. A fragile connection: c-di-AMP impacts cell integrity by controlling osmolyte transport. Developments Microbiol. 26, 175–185 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji, Y., Chakraborty, T. & Wegner, S. V. Self-regulated and bidirectional communication in artificial cell communities. ACS Nano 17, 8992–9002 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang, T.-Y. D. et al. Gene-mediated chemical communication in artificial protocell communities. ACS Synth. Biol. 7, 339–346 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • King, M. S. & Kunji, E. R. S. in Expression, Purification, and Structural Biology of Membrane Proteins Vol. 2127 (eds Perez, C. & Maier, T.) 47–61 (Springer US, 2020).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *