Solar, H. et al. IDF Diabetes Atlas: World, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).
Katsarou, A. et al. Kind 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016 (2017).
Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. 100 years of insulin remedy. Nat. Rev. Endocrinol. 17, 715–725 (2021).
Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and supply methods. Nat. Rev. Drug Discov. 13, 655–672 (2014).
Geho, W. B. The significance of the liver in insulin alternative remedy in insulin-deficient diabetes. Diabetes 63, 1445–1447 (2014).
Brown, T. D., Whitehead, Okay. A. & Mitragotri, S. Supplies for oral supply of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).
Lee, J. S. et al. Metabolic and immunomodulatory management of kind 1 diabetes through orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat. Biomed. Eng. 5, 983–997 (2021).
Veiseh, O., Tang, B. C., Whitehead, Okay. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and alternatives. Nat. Rev. Drug Discov. 14, 45–57 (2015).
Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive supplies. Nat. Rev. Mater. 2, 16075 (2016).
Bakh, N. A. et al. Glucose-responsive insulin by molecular and bodily design. Nat. Chem. 9, 937–944 (2017).
Wang, J. et al. Glucose-responsive insulin and supply programs: innovation and translation. Adv. Mater. 32, 1902004 (2020).
Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Rising micro- and nanotechnology primarily based artificial approaches for insulin supply. Chem. Soc. Rev. 43, 3595–3629 (2014).
Wang, Z., Wang, J., Kahkoska, A. R., Buse, J. B. & Gu, Z. Creating insulin supply units with glucose responsiveness. Tendencies Pharmacol. Sci. 42, 31–44 (2021).
Gu, Z. et al. Glucose-responsive microgels built-in with enzyme nanocapsules for closed-loop insulin supply. ACS Nano 7, 6758–6766 (2013).
Chen, Z. et al. Artificial beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).
Podual, Okay., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Management. Launch 67, 9–17 (2000).
Kitano, S., Koyama, Y., Kataoka, Okay., Okano, T. & Sakurai, Y. A novel drug supply system using a glucose responsive polymer complicated between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Management. Launch 19, 161–170 (1992).
Hisamitsu, I., Kataoka, Okay., Okano, T. & Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): immediate response at physiological pH by the interplay of borate with amino group within the gel. Pharm. Res. 14, 289–293 (1997).
Matsumoto, A. et al. An artificial strategy towards a self-regulated insulin supply system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012).
Chou, D. H.-C. et al. Glucose-responsive insulin exercise by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).
Wang, J. et al. Cost-switchable polymeric complicated for glucose-responsive insulin supply in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).
Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).
Wang, J. et al. Injectable biodegradable polymeric complicated for glucose-responsive insulin supply. ACS Nano 15, 4294–4304 (2021).
Matsumoto, A. et al. Artificial ‘good gel’ gives glucose-responsive insulin supply in diabetic mice. Sci. Adv. 3, eaaq0723 (2017).
Zhang, J. et al. Week-long normoglycaemia in diabetic mice and minipigs through a subcutaneous dose of a glucose-responsive insulin complicated. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01138-7 (2023).
Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin sure to lectin. Science 206, 1190–1191 (1979).
Wang, J. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).
Yao, Y., Ji, Okay., Wang, Y., Gu, Z. & Wang, J. Supplies and carriers growth for glucose-responsive insulin. Acc. Mater. Res. 3, 960–970 (2022).
Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug supply and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).
Yang, T. et al. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat. Commun. 13, 6649 (2022).
Xi, Z. et al. Twin-modified nanoparticles overcome sequential absorption boundaries for oral insulin supply. J. Management. Launch 342, 1–13 (2022).
Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).
Yang, Y. et al. Latest advances in oral and transdermal protein supply programs. Angew. Chem. Int. Ed. 62, e202214795 (2023).
Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, Okay. J. Overcoming boundaries to affected person adherence: the case for creating progressive drug supply programs. Nat. Rev. Drug Discov. 22, 387–409 (2023).
Lamson, N. G., Berger, A., Fein, Okay. C. & Whitehead, Okay. A. Anionic nanoparticles allow the oral supply of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).
Lagarrigue, P., Moncalvo, F. & Cellesi, F. Non-spherical polymeric nanocarriers for therapeutics: the impact of form on organic programs and drug supply properties. Pharmaceutics 15, 32 (2023).
Ji, Okay. et al. Materials design for oral insulin supply. Med X 1, 7 (2023).
Yu, J. et al. Glucose-responsive oral insulin supply for postprandial glycemic regulation. Nano Res. 12, 1539–1545 (2019).
Wang, A. et al. Liver-target and glucose-responsive polymersomes towards mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv. Funct. Mater. 30, 1910168 (2020).
Xiao, Y. et al. Glucose-responsive oral insulin supply platform for one therapy a day in diabetes. Matter 4, 3269–3285 (2021).
Han, X. et al. Zwitterionic micelles effectively ship oral insulin with out opening tight junctions. Nat. Nanotechnol. 15, 605–614 (2020).
Lu, Y. et al. Micelles with ultralow crucial micelle focus as carriers for drug supply. Nat. Biomed. Eng. 2, 318–325 (2018).
Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Function of nanoparticle measurement, form and floor chemistry in oral drug supply. J. Management. Launch 238, 176–185 (2016).
Xiao, W. et al. Extremely delicate colorimetric detection of a wide range of analytes through the Tyndall impact. Anal. Chem. 91, 15114–15122 (2019).
Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).
Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral supply. Sci. Transl. Med. 5, 213ra167 (2013).
Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male c57BL/6J mice. Science 376, 1192–1202 (2022).
Yang, R. et al. A glucose-responsive insulin remedy protects animals towards hypoglycemia. JCI Perception 3, e97476 (2018).
Qiu, Y. et al. Lengthy-lasting designer insulin with glucose-dependent solubility markedly reduces threat of hypoglycemia. Adv. Ther. (Weinh.) 2, 1900128 (2019).
Ayala, J. E. et al. Hyperinsulinemic–euglycemic clamps in acutely aware, unrestrained mice. J. Vis. Exp. 16, e3188 (2011).
Cao, Z., Zhang, L. & Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 28, 11625–11632 (2012).
Fan, W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for most cancers drug supply. Adv. Mater. 34, 2109189 (2022).
Zou, J.-J. et al. Environment friendly oral insulin supply enabled by transferrin-coated acid-resistant steel–natural framework nanoparticles. Sci. Adv. 8, eabm4677 (2022).