An orally administered glucose-responsive polymeric complicated for high-efficiency and secure supply of insulin in mice and pigs

An orally administered glucose-responsive polymeric complicated for high-efficiency and secure supply of insulin in mice and pigs


  • Solar, H. et al. IDF Diabetes Atlas: World, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Katsarou, A. et al. Kind 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. 100 years of insulin remedy. Nat. Rev. Endocrinol. 17, 715–725 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and supply methods. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geho, W. B. The significance of the liver in insulin alternative remedy in insulin-deficient diabetes. Diabetes 63, 1445–1447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, T. D., Whitehead, Okay. A. & Mitragotri, S. Supplies for oral supply of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article 

    Google Scholar
     

  • Lee, J. S. et al. Metabolic and immunomodulatory management of kind 1 diabetes through orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat. Biomed. Eng. 5, 983–997 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veiseh, O., Tang, B. C., Whitehead, Okay. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and alternatives. Nat. Rev. Drug Discov. 14, 45–57 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive supplies. Nat. Rev. Mater. 2, 16075 (2016).

    Article 

    Google Scholar
     

  • Bakh, N. A. et al. Glucose-responsive insulin by molecular and bodily design. Nat. Chem. 9, 937–944 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Glucose-responsive insulin and supply programs: innovation and translation. Adv. Mater. 32, 1902004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Rising micro- and nanotechnology primarily based artificial approaches for insulin supply. Chem. Soc. Rev. 43, 3595–3629 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Wang, J., Kahkoska, A. R., Buse, J. B. & Gu, Z. Creating insulin supply units with glucose responsiveness. Tendencies Pharmacol. Sci. 42, 31–44 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gu, Z. et al. Glucose-responsive microgels built-in with enzyme nanocapsules for closed-loop insulin supply. ACS Nano 7, 6758–6766 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Artificial beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podual, Okay., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Management. Launch 67, 9–17 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitano, S., Koyama, Y., Kataoka, Okay., Okano, T. & Sakurai, Y. A novel drug supply system using a glucose responsive polymer complicated between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Management. Launch 19, 161–170 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Hisamitsu, I., Kataoka, Okay., Okano, T. & Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): immediate response at physiological pH by the interplay of borate with amino group within the gel. Pharm. Res. 14, 289–293 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, A. et al. An artificial strategy towards a self-regulated insulin supply system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chou, D. H.-C. et al. Glucose-responsive insulin exercise by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Cost-switchable polymeric complicated for glucose-responsive insulin supply in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Injectable biodegradable polymeric complicated for glucose-responsive insulin supply. ACS Nano 15, 4294–4304 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, A. et al. Artificial ‘good gel’ gives glucose-responsive insulin supply in diabetic mice. Sci. Adv. 3, eaaq0723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Week-long normoglycaemia in diabetic mice and minipigs through a subcutaneous dose of a glucose-responsive insulin complicated. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01138-7 (2023).

  • Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin sure to lectin. Science 206, 1190–1191 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y., Ji, Okay., Wang, Y., Gu, Z. & Wang, J. Supplies and carriers growth for glucose-responsive insulin. Acc. Mater. Res. 3, 960–970 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug supply and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat. Commun. 13, 6649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, Z. et al. Twin-modified nanoparticles overcome sequential absorption boundaries for oral insulin supply. J. Management. Launch 342, 1–13 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Latest advances in oral and transdermal protein supply programs. Angew. Chem. Int. Ed. 62, e202214795 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, Okay. J. Overcoming boundaries to affected person adherence: the case for creating progressive drug supply programs. Nat. Rev. Drug Discov. 22, 387–409 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamson, N. G., Berger, A., Fein, Okay. C. & Whitehead, Okay. A. Anionic nanoparticles allow the oral supply of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagarrigue, P., Moncalvo, F. & Cellesi, F. Non-spherical polymeric nanocarriers for therapeutics: the impact of form on organic programs and drug supply properties. Pharmaceutics 15, 32 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Okay. et al. Materials design for oral insulin supply. Med X 1, 7 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Glucose-responsive oral insulin supply for postprandial glycemic regulation. Nano Res. 12, 1539–1545 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. et al. Liver-target and glucose-responsive polymersomes towards mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv. Funct. Mater. 30, 1910168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Glucose-responsive oral insulin supply platform for one therapy a day in diabetes. Matter 4, 3269–3285 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Zwitterionic micelles effectively ship oral insulin with out opening tight junctions. Nat. Nanotechnol. 15, 605–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Micelles with ultralow crucial micelle focus as carriers for drug supply. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Function of nanoparticle measurement, form and floor chemistry in oral drug supply. J. Management. Launch 238, 176–185 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, W. et al. Extremely delicate colorimetric detection of a wide range of analytes through the Tyndall impact. Anal. Chem. 91, 15114–15122 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral supply. Sci. Transl. Med. 5, 213ra167 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male c57BL/6J mice. Science 376, 1192–1202 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, R. et al. A glucose-responsive insulin remedy protects animals towards hypoglycemia. JCI Perception 3, e97476 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. Lengthy-lasting designer insulin with glucose-dependent solubility markedly reduces threat of hypoglycemia. Adv. Ther. (Weinh.) 2, 1900128 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ayala, J. E. et al. Hyperinsulinemic–euglycemic clamps in acutely aware, unrestrained mice. J. Vis. Exp. 16, e3188 (2011).


    Google Scholar
     

  • Cao, Z., Zhang, L. & Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 28, 11625–11632 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for most cancers drug supply. Adv. Mater. 34, 2109189 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zou, J.-J. et al. Environment friendly oral insulin supply enabled by transferrin-coated acid-resistant steel–natural framework nanoparticles. Sci. Adv. 8, eabm4677 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *