Advancing most cancers gene remedy: the rising position of nanoparticle supply methods | Journal of Nanobiotechnology

Advancing most cancers gene remedy: the rising position of nanoparticle supply methods | Journal of Nanobiotechnology


  • Ledley FD. Pharmaceutical method to somatic gene remedy. Pharm Res. 1996;13:1595–614.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor supply. Nat Commun. 2024;15:8172.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid medication: latest progress and future views. Sign Transduct Goal Ther. 2024;9:316.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang Ok, Xu J, Cheng Y, Gao X. Present advance of nanotechnology in analysis and remedy for malignant tumors. Sign Transduct Goal Ther. 2024;9:200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson J, Luly KM, Tzeng SY, Inexperienced JJ. Nanoparticle designs for supply of nucleic acid therapeutics as mind most cancers therapies. Adv Drug Deliv Rev. 2021;179:113999.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garbayo E, El Moukhtari SH, Rodriguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prosper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the remedy of hematological cancers. Adv Drug Deliv Rev. 2024;214:115448.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu D, Kim WJ, Lee H, Bao X, Kim P. Engineering CAR-T therapeutics for enhanced stable tumor concentrating on. Adv Mater. 2025;e2414882.

  • Park M, Lim J, Lee S, Nah Y, Kang Y, Kim WJ. Nanoparticle-Mediated explosive Anti-PD-L1 manufacturing unit in-built tumor for superior immunotherapy. Adv Mater. 2025;e2417735.

  • Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for environment friendly nuclear concentrating on. Adv Drug Deliv Rev. 2024;211:115354.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Steel-Drug coordination nanoparticles and hydrogels for enhanced supply. Adv Mater. 2024;36:e2404053.

    Article 
    PubMed 

    Google Scholar
     

  • Jogdeo CM, Siddhanta Ok, Das A, Ding L, Panja S, Kumari N, Oupicky D. Past lipids: exploring advances in polymeric gene supply within the lipid nanoparticles period. Adv Mater. 2024;36:e2404608.

    Article 
    PubMed 

    Google Scholar
     

  • Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Solar L. Exploring precision therapies in immune-mediated inflammatory illnesses: Harnessing the infinite potential of nucleic acid supply. Exploration. 2024.

  • Seashore MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric nanoparticles for drug supply. Chem Rev. 2024;124:5505–616.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Z, Ukidve A, Kim J, Mitragotri S. Concentrating on methods for Tissue-Particular drug supply. Cell. 2020;181:151–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Piotrowski-Daspit AS, Bracaglia LG, Eaton DA, Richfield O, Binns TC, Albert C, Gould J, Mortlock RD, Egan ME, Pober JS, Saltzman WM. Enhancing in vivo cell and tissue concentrating on by modulation of polymer nanoparticles and macrophage decoys. Nat Commun. 2024;15:4247.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang MZ, Niu J, Ma HJ, Dad HA, Shao HT, Yuan TJ, Peng LH. Transdermal SiRNA supply by pH-switchable micelles with concentrating on impact suppress pores and skin melanoma development. J Management Launch. 2020;322:95–107.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X, Zhao Y, Li J, Mi S, Huo H, et al. Cost-assisted stabilization of lipid nanoparticles permits inhaled mRNA supply for mucosal vaccination. Nat Commun. 2024;15:9471.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Ok, Han H, Zhao S, Xu B, Yin B, Lawanprasert A, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Lung and liver enhancing by lipid nanoparticle supply of a secure CRISPR-Cas9 ribonucleoprotein. Nat Biotechnol. 2024.

  • Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121:e2307800120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han X, Gong N, Xue L, Billingsley MM, El-Mayta R, Shepherd SJ, Alameh MG, Weissman D, Mitchell MJ. Ligand-tethered lipid nanoparticles for focused RNA supply to deal with liver fibrosis. Nat Commun. 2023;14:75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen J, Hu S, Solar M, Shi J, Zhang H, Yu H, Yang Z. Current advances and scientific translation of liposomal supply methods in most cancers remedy. Eur J Pharm Sci. 2024;193:106688.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: present challenges and future purposes. Developments Pharmacol Sci. 2022;43:151–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Papke B, Van Swearingen AE, Feng AY, Azam SH, Harrison EB, Yang R, Cox AD, Der CJ, Pecot CV. Summary B32: Silencing of oncogenic KRAS by a mutant-favoring brief interfering RNA. Mol Most cancers Res. 2020;18:B32–32.

    Article 

    Google Scholar
     

  • Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee Ok, Liang X-J. Current superior lipid-based nanomedicines for overcoming most cancers resistance. Most cancers Drug Resist. 2024;7:24.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Subsequent-Era vaccines: Nanoparticle-Mediated DNA and mRNA supply. Adv Healthc Mater. 2021;10:e2001812.

    Article 
    PubMed 

    Google Scholar
     

  • Zahed Z, Hadi R, Imanzadeh G, Ahmadian Z, Shafiei S, Zadeh AZ, Karimi H, Akbarzadeh A, Abbaszadeh M, Ghadimi LS. Current advances in fluorescence nanoparticles quantum Dots as gene supply system: A overview. Int J Biol Macromol. 2024;254:127802.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee KX, Shameli Ok, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Current developments within the facile Bio-Synthesis of gold nanoparticles (AuNPs) and their biomedical purposes. Int J Nanomed. 2020;15:275–300.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an essential inorganic nanoparticle utilized in drug provider methods. Artif Cells Nanomed Biotechnol. 2019;47:4222–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khutale GV, Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug launch. Eur J Pharm Biopharm. 2017;119:372–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chuang CC, Cheng CC, Chen PY, Lo C, Chen YN, Shih MH, Chang CW. Gold nanorod-encapsulated biodegradable polymeric matrix for mixed photothermal and chemo-cancer remedy. Int J Nanomed. 2019;14:181–93.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H. Polydopamine-Assisted silver nanoparticle Self-Meeting on Sericin/Agar movie for potential wound dressing utility. Int J Mol Sci. 2018;19.

  • Wojnicki M, Luty-Błocho M, Kotańska M, Wytrwal M, Tokarski T, Krupa A, Kołaczkowski M, Bucki A, Kobielusz M. Novel and efficient synthesis protocol of AgNPs functionalized utilizing L-cysteine as a possible drug provider. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:123–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free mesoporous silica nanoparticles: A streamlined technique for focused drug supply throughout the Blood-Mind barrier. ACS Nano. 2024;18:12716–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node concentrating on platform for vaccine supply. ACS Appl Mater Interfaces. 2017;9:23466–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou XF, Zhuang YC, Zhang MH, Sheng H, Solar QF, He L. Relativistic synthetic molecule of two coupled graphene quantum Dots at tunable distances. Nat Commun. 2024;15:8786.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zuo H, Chen W, Cooper HM, Xu ZP. A facile method of modifying layered double hydroxide nanoparticles with concentrating on Ligand-Conjugated albumin for enhanced supply to mind tumour cells. ACS Appl Mater Interfaces. 2017;9:20444–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Grey PP. Steady suspension of layered double hydroxide nanoparticles in aqueous answer. J Am Chem Soc. 2006;128:36–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu ZP, Stevenson G, Lu CQ, Lu GQ. Dispersion and dimension management of layered double hydroxide nanoparticles in aqueous options. J Phys Chem B. 2006;110:16923–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao Z, Li B, Solar L, Li L, Xu ZP, Gu Z. 2D layered double hydroxide nanoparticles: latest progress towards preclinical/scientific nanomedicine. Small Strategies. 2020;4:1900343.

    Article 
    CAS 

    Google Scholar
     

  • Gao C, Jiang J, Zhao J, Xu ZP, Zhang L. Engineered nano-aluminum adjuvant for most cancers immunotherapy: progress, challenges and alternatives in direction of preclinical/scientific utility. Coord Chem Rev. 2024;519:216109.

    Article 
    CAS 

    Google Scholar
     

  • Valadi H, Ekström Ok, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated switch of mRNAs and MicroRNAs is a novel mechanism of genetic trade between cells. Nat Cell Biol. 2007;9:654–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, Lucks JB, Hultquist JF, Leonard JN. Genetically encoding a number of functionalities into extracellular vesicles for the focused supply of biologics to T cells. Nat Biomed Eng. 2024;8:397–414.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of SiRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonsergent E, Grisard E, Buchrieser J, Schwartz O, Théry C, Lavieu G. Quantitative characterization of extracellular vesicle uptake and content material supply inside mammalian cells. Nat Commun. 2021;12:1864.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng L, Hill AF. Therapeutically Harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled drug supply methods. Chem Rev. 2019;119:6459–506.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, Cai Z, Ma W, Bai L, Luo E, Lin Y. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior supply of Curcumin and alleviation of diabetic osteoporosis. Bone Res. 2024;12:14.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang Ok. Spatially managed DNA frameworks for delicate detection and particular isolation of tumor cells. Angew Chem Int Ed Engl. 2024;63:e202411382.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sellner S, Kocabey S, Nekolla Ok, Krombach F, Liedl T, Rehberg M. DNA nanotubes as intracellular supply automobiles in vivo. Biomaterials. 2015;53:453–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhuang X, Ma X, Xue X, Jiang Q, Tune L, Dai L, Zhang C, Jin S, Yang Ok, Ding B, et al. A Photosensitizer-Loaded DNA Origami nanosystem for photodynamic remedy. ACS Nano. 2016;10:3486–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pan Q, Nie C, Hu Y, Yi J, Liu C, Zhang J, He M, He M, Chen T, Chu X. Aptamer-Functionalized DNA Origami for focused codelivery of antisense oligonucleotides and doxorubicin to reinforce remedy in Drug-Resistant Most cancers cells. ACS Appl Mater Interfaces. 2020;12:400–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Mobile uptake of nanoparticles: journey contained in the cell. Chem Soc Rev. 2017;46:4218–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Foroozandeh P, Aziz AA. Perception into mobile uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:339.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohrabi Kashani A, Packirisamy M. Most cancers-Nano-Interplay: from mobile uptake to Mechanobiological responses. Int J Mol Sci. 2021;22:9587.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abdulrahman A, Ghanem A. Current advances in chromatographic purification of plasmid DNA for gene remedy and DNA vaccines: A overview. Anal Chim Acta. 2018;1025:41–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shigeta Ok, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. Novel histidine-conjugated galactosylated cationic liposomes for environment friendly hepatocyte-selective gene switch in human hepatoma HepG2 cells. J Management Launch. 2007;118:262–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Togashi R, Tanaka H, Nakamura S, Yokota H, Tange Ok, Nakai Y, Yoshioka H, Harashima H, Akita H. A hepatic pDNA supply system primarily based on an intracellular setting delicate vitamin E-scaffold lipid-like materials with the help of an anti-inflammatory drug. J Management Launch. 2018;279:262–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sahin U, Kariko Ok, Tureci O. mRNA-based therapeutics–creating a brand new class of medication. Nat Rev Drug Discov. 2014;13:759–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miao L, Zhang Y, Huang L. mRNA vaccine for most cancers immunotherapy. Mol Most cancers. 2021;20:41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li Y, Ma X, Yue Y, Zhang Ok, Cheng Ok, Feng Q, Ma N, Liang J, Zhang T, Zhang L, et al. Fast floor show of mRNA antigens by Micro organism-Derived outer membrane vesicles for a personalised tumor vaccine. Adv Mater. 2022;34:e2109984.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto VP, Lächelt U, et al. From structural design to supply: mRNA therapeutics for most cancers immunotherapy. Exploration. 2024;4:20210146.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid supply. Nat Rev Drug Discov. 2024;23:709–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil Ok, Raabe V, Bailey R, Swanson KA, et al. Part I/II research of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA vaccine in opposition to SARS-CoV-2 – Preliminary report. N Engl J Med. 2020;383:1920–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based mostly Most cancers vaccines: developments and prospects. Nano Lett. 2024;24:12711–21.

    CAS 

    Google Scholar
     

  • Li Z, Zhang XQ, Ho W, Li F, Gao M, Bai X, Xu X. Enzyme-Catalyzed One-Step synthesis of ionizable cationic lipids for lipid Nanoparticle-Based mostly mRNA COVID-19 vaccines. ACS Nano. 2022;16:18936–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li B, Luo X, Deng B, Wang J, McComb DW, Shi Y, Gaensler KM, Tan X, Dunn AL, Kerlin BA, Dong Y. An orthogonal array optimization of Lipid-like nanoparticles for mRNA supply in vivo. Nano Lett. 2015;15:8099–107.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal supply and transfection of mRNA therapeutics within the mind utilizing cationic liposomes. Mol Pharm. 2020;17:1996–2005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rizvi F, Everton E, Smith AR, Liu H, Osota E, Beattie M, Tam Y, Pardi N, Weissman D, Gouon-Evans V. Murine liver restore by way of transient activation of regenerative pathways in hepatocytes utilizing lipid nanoparticle-complexed nucleoside-modified mRNA. Nat Commun. 2021;12:613.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6:1078–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Philipp J, Dabkowska A, Reiser A, Frank Ok, Krzyszton R, Brummer C, Nickel B, Blanchet CE, Sudarsan A, Ibrahim M, et al. pH-dependent structural transitions in cationic ionizable lipid mesophases are important for lipid nanoparticle perform. Proc Natl Acad Sci U S A. 2023;120:e2310491120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature. 2016;534:396–401.

    Article 
    PubMed 

    Google Scholar
     

  • LoPresti ST, Arral ML, Chaudhary N, Whitehead KA. The alternative of helper lipids with charged options in lipid nanoparticles facilitates focused mRNA supply to the spleen and lungs. J Management Launch. 2022;345:819–31.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Management Launch. 2010;145:182–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP third, Hou S, Esposito AA, Ketova T, Welsher Ok, et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat Commun. 2020;11:983.

  • Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska Ok, Huayamares SG, Hua X, Han Ok, Loughrey D, et al. Cationic cholesterol-dependent LNP supply to lung stem cells, the liver, and coronary heart. Proc Natl Acad Sci U S A. 2024;121:e2307801120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: affect of polymer construction on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the lack of mRNA exercise in lipid nanoparticle supply methods. Nat Commun. 2021;12:6777.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li B, Manan RS, Liang SQ, Gordon A, Jiang A, Varley A, Gao G, Langer R, Xue W, Anderson D. Combinatorial design of nanoparticles for pulmonary mRNA supply and genome enhancing. Nat Biotechnol. 2023;41:1410–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bannigan P, Aldeghi M, Bao Z, Hase F, Aspuru-Guzik A, Allen C. Machine studying directed drug formulation improvement. Adv Drug Deliv Rev. 2021;175:113806.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang W, Chen Ok, Jiang T, Wu Y, Wu Z, Ying H, Yu H, Lu J, Lin J, Ouyang D. Synthetic intelligence-driven rational design of ionizable lipids for mRNA supply. Nat Commun. 2024;15:10804.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F, Golubovic A, Zhou M, Wang KC, Varley A, et al. AGILE platform: a deep studying powered method to speed up LNP improvement for mRNA supply. Nat Commun. 2024;15:6305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design utilizing machine studying: generative fashions for matter engineering. Science. 2018;361:360–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Ok, Solar X, Jia L, Ma J, Xing H, Wu J, Gao H, Solar Y, Boulnois F, Fan J. Chemi-net: a molecular graph convolutional community for correct drug property prediction. Int J Mol Sci. 2019;20:3389.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the sport of go together with deep neural networks and tree search. Nature. 2016;529:484–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gu Y, Chen J, Wang Z, Liu C, Wang T, Kim CJ, Durikova H, Fernandes S, Johnson DN, De Rose R, et al. mRNA supply enabled by metal-organic nanoparticles. Nat Commun. 2024;15:9664.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20:101–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Subsequent-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line medication. Acta Pharm Sin B. 2024;14:4665–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang L, Bai J, Shen A, Zhao J, Su Z, Wang M, Dong M, Xu ZP. Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and prompts antigen-specific cytotoxic T cells for enhanced most cancers immunotherapy. Biomaterials. 2025;317:123085.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P, Lu E, Brosnan CA, Xu ZP, Mitter N. Foliar utility of clay-delivered RNA interference for whitefly management. Nat Crops. 2022;8:535–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yong J, Wu M, Zhang R, Bi S, Mann CWG, Mitter N, Carroll BJ, Xu ZP. Clay nanoparticles effectively ship small interfering RNA to intact plant leaf cells. Plant Physiol. 2022;190:2187–202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, Brosnan CA, Mitter N, Carroll BJ, Xu ZP. Lysozyme-coated nanoparticles for energetic uptake and supply of artificial RNA and plasmid-encoded genes in crops. Nat Crops. 2025;11:131–44.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska AB, Santaniello A, Piaggesi A, et al. Exogenous MiRNAs induce post-transcriptional gene Silencing in crops. Nat Crops. 2021;7:1379–88.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for most cancers analysis and remedy. J Management Launch. 2022;342:228–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haussecker D, Kay MA. RNA interference. Drugging RNAi. Science. 2015;347:1069–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Tian Y, Liu L, Chen C, Zhang W, Wang L, Guo Q, Ding L, Fu H, Tune H, et al. Exact concentrating on remedy of orthotopic gastric carcinoma by SiRNA and chemotherapeutic drug codelivered in pH-Delicate nano platform. Adv Healthc Mater. 2021;10:e2100966.

    Article 
    PubMed 

    Google Scholar
     

  • Tang X, Sheng Q, Xu C, Li M, Rao J, Wang X, Lengthy Y, Tao Y, He X, Zhang Z, He Q. pH/ATP cascade-responsive nano-courier with environment friendly tumor concentrating on and SiRNA unloading for photothermal-immunotherapy. Nano In the present day. 2021;37:101083.

    Article 
    CAS 

    Google Scholar
     

  • Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught Ok, Agarwal P, Zhang Y, Liu S, Zhao G, et al. Exact concentrating on of POLR2A as a therapeutic technique for human triple unfavorable breast most cancers. Nat Nanotechnol. 2019;14:388–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Solar J, Zhang L, Solar R, Bain DJ, et al. Concentrating on Xkr8 by way of nanoparticle-mediated in situ co-delivery of SiRNA and chemotherapy medication for most cancers immunochemotherapy. Nat Nanotechnol. 2023;18:193–204.

    Article 
    PubMed 

    Google Scholar
     

  • Li M, Solar J, Zhang W, Zhao Y, Zhang S, Zhang S. Drug supply methods primarily based on CD44-targeted glycosaminoglycans for most cancers remedy. Carbohydr Polym. 2021;251:117103.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mi Y, Mu C, Wolfram J, Deng Z, Hu TY, Liu X, Blanco E, Shen H, Ferrari M. A micro/nano composite for mixture remedy of melanoma lung metastasis. Adv Healthc Mater. 2016;5:936–46.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Z, Li Y, Liu H, Jain A, Patel PV, Cheng Ok. Co-delivery of IKBKE SiRNA and Cabazitaxel by hybrid nanocomplex inhibits invasiveness and progress of triple-negative breast most cancers. Sci Adv. 2020;6:eabb0616.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-Based mostly methods for SiRNA mind supply for illness remedy. Developments Biotechnol. 2018;36:562–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Wu T, Shan Y, Li G, Ni X, Chen X, Hu X, Lin L, Li Y, Guan Y, et al. Therapeutic reversal of Huntington’s illness by in vivo self-assembled SiRNAs. Mind. 2021;144:3421–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Hou S, Movahedi F, Li Z, Li L, Hu J, Jia Y, Huang Y, Zhu J, Solar X, et al. Amyloid-β/Tau burden and neuroinflammation dual-targeted nanomedicines synergistically restore reminiscence and recognition of Alzheimer’s illness mice. Nano In the present day. 2023;49:101788.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Qin J, Yu D, Liu Y, Tune D, Tian Ok, Chen H, Ye Q, Wang X, Xu T, et al. Polymer-locking fusogenic liposomes for glioblastoma-targeted SiRNA supply and CRISPR-Cas gene enhancing. Nat Nanotechnol. 2024;19:1869–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahn I, Kang CS, Han J. The place ought to SiRNAs go: relevant organs for SiRNA medication. Exp Mol Med. 2023;55:1283–92.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Ma H, Li L, Solar C, Yu C, Wang L, Xu D, Tune X, Yu R. Twin-Focused novel Temozolomide nanocapsules encapsulating siPKM2 inhibit cardio Glycolysis to sensitize glioblastoma to chemotherapy. Adv Mater. 2024;36:e2400502.

    Article 
    PubMed 

    Google Scholar
     

  • Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular vesicle (EVs) related Non-Coding RNAs in lung Most cancers and therapeutics. Int J Mol Sci. 2022;23.

  • Moro M, Di Paolo D, Milione M, Centonze G, Bornaghi V, Borzi C, Gandellini P, Perri P, Pastorino U, Ponzoni M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor progress in patient-derived xenografts lung most cancers fashions. J Management Launch. 2019;308:44–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng Y, Zhu X, Qiu L. Electroneutral composite polymersomes self-assembled by amphiphilic polyphosphazenes for efficient miR-200c in vivo supply to inhibit drug resistant lung most cancers. Biomaterials. 2016;106:1–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perepelyuk M, Maher C, Lakshmikuttyamma A, Shoyele SA. Aptamer-hybrid nanoparticle bioconjugate effectively delivers miRNA-29b to non-small-cell lung most cancers cells and inhibits progress by downregulating important oncoproteins. Int J Nanomed. 2016;11:3533–44.

    Article 
    CAS 

    Google Scholar
     

  • Mendonca MCP, Kont A, Aburto MR, Cryan JF, O’Driscoll CM. Advances within the design of (Nano)Formulations for supply of antisense oligonucleotides and small interfering RNA: concentrate on the central nervous system. Mol Pharm. 2021;18:1491–506.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense know-how: an summary and prospectus. Nat Rev Drug Discov. 2021;20:427–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng X, Yu D, Cheng G, Yung BC, Liu Y, Li H, Kang C, Fang X, Tian S, Zhou X, et al. T7 Peptide-Conjugated lipid nanoparticles for twin modulation of Bcl-2 and Akt-1 in lung and cervical carcinomas. Mol Pharm. 2018;15:4722–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee SJ, Lim JH, Choi YH, Kim WJ, Moon SK. Interleukin-28A triggers wound therapeutic migration of bladder most cancers cells by way of NF-κB-mediated MMP-9 expression inducing the MAPK pathway. Cell Sign. 2012;24:1734–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Concentrating on LncRNA MALAT1 inhibits Most cancers metastasis. ACS Appl Mater Interfaces. 2019;11:37–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kawamura E, Hibino M, Harashima H, Yamada Y. Focused mitochondrial supply of antisense RNA-containing nanoparticles by a MITO-Porter for secure and environment friendly mitochondrial gene Silencing. Mitochondrion. 2019;49:178–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, Duan X, Zhang F, Xie M, Le H, et al. Nanomedicine directs neuronal differentiation of neural stem cells by way of Silencing lengthy noncoding RNA for stroke remedy. Nano Lett. 2021;21:806–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen L, Li G, Wang X, Li J, Zhang Y. Spherical nucleic acids for Close to-Infrared Mild-Responsive Self-Supply of Small-Interfering RNA and antisense oligonucleotide. ACS Nano. 2021;15:11929–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Agarwal C. A overview: CRISPR/Cas12-mediated genome enhancing in fungal cells: developments, mechanisms, and future instructions in plant-fungal pathology. ScienceOpen Res. 2023.

  • Terns MP, Terns RM. CRISPR-based adaptive immune methods. Curr Opin Microbiol. 2011;14:321–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jia Z, Zhang Y, Zhang C, Wei X, Zhang M. Biosensing intestinal alkaline phosphatase by being pregnant take a look at strips primarily based on target-triggered CRISPR-Cas12a exercise to watch intestinal irritation. Anal Chem. 2023;95:14111–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F. Remedy of influenza and SARS-CoV-2 infections by way of mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39:717–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering utilizing the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome enhancing utilizing Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, et al. CRISPR-Cas9 knockin mice for genome enhancing and most cancers modeling. Cell. 2014;159:440–55.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hughes TS, Langer SJ, Virtanen SI, Chavez RA, Watkins LR, Milligan ED, Leinwand LA. Immunogenicity of intrathecal plasmid gene supply: cytokine launch and results on transgene expression. J Gene Med. 2009;11:782–90.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang L, Wang P, Feng Q, Wang N, Chen Z, Huang Y, Zheng W, Jiang X. Lipid nanoparticle-mediated environment friendly supply of CRISPR/Cas9 for tumor remedy. NPG Asia Mater. 2017;9:e441–441.

    Article 
    CAS 

    Google Scholar
     

  • Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, Du XJ, Yang XZ, Gu Z, Wang J. Macrophage-Particular in vivo gene enhancing utilizing cationic Lipid-Assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo YL, Liang LF, Gan YJ, Liu J, Zhang Y, Fan YN, Zhao G, Czarna A, Lu ZD, Du XJ, et al. An All-in-One nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring particular immune tolerance. ACS Appl Mater Interfaces. 2020;12:48259–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan X, Pan Q, Xin H, Chen Y, Ping Y. Genome-editing prodrug: focused supply and conditional stabilization of CRISPR-Cas9 for precision remedy of inflammatory illness. Sci Adv. 2021;7:eabj0624.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, et al. Thermo-triggered launch of CRISPR-Cas9 system by Lipid-Encapsulated gold nanoparticles for tumor remedy. Angew Chem Int Ed Engl. 2018;57:1491–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial management of in vivo CRISPR-Cas9 genome enhancing by way of nanomagnets. Nat Biomed Eng. 2019;3:126–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li J, Hao Y, Pan H, Zhang Y, Cheng G, Liu B, Chang J, Wang H. CRISPR-dcas9 optogenetic nanosystem for the blue Mild-Mediated remedy of neovascular lesions. ACS Appl Bio Mater. 2021;4:2502–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, Yang Z, Zhu S, He L, Fan W, Tang W, Zou J, Shen Z, Zhang M, Tang L, et al. A rationally designed semiconducting polymer brush for NIR-II Imaging-Guided Mild-Triggered distant management of CRISPR/Cas9 genome enhancing. Adv Mater. 2019;31:e1901187.

    Article 
    PubMed 

    Google Scholar
     

  • Tang H, Xu X, Chen Y, Xin H, Wan T, Li B, Pan H, Li D, Ping Y. Reprogramming the tumor microenvironment by Second-Close to-Infrared-Window photothermal genome enhancing of PD-L1 mediated by supramolecular gold nanorods for enhanced Most cancers immunotherapy. Adv Mater. 2021;33:e2006003.

    Article 
    PubMed 

    Google Scholar
     

  • Alsaiari SK, Eshaghi B, Du B, Kanelli M, Li G, Wu X, Zhang L, Chaddah M, Lau A, Yang X, et al. CRISPR–Cas9 supply methods for the modulation of immune and non-immune cells. Nat Rev Mater. 2024;10:44–61.

    Article 

    Google Scholar
     

  • Sahin U, Karikó Ok, Türeci Ö. mRNA-based therapeutics–creating a brand new class of medication. Nat Rev Drug Discov. 2014;13:759–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang X, Li B, Luo X, Zhao W, Jiang J, Zhang C, Gao M, Chen X, Dong Y. Biodegradable Amino-Ester nanomaterials for Cas9 mRNA supply in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9:25481–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene enhancing. Nat Mater. 2021;20:701–10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR-Cas gene enhancing. Nat Nanotechnol. 2020;15:313–20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, Xu Q. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome enhancing of Angptl3. Proc Natl Acad Sci U S A. 2021;118.

  • Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. CES1-Triggered Liver-Particular cargo launch of CRISPR/Cas9 parts by cationic triadic copolymeric nanoparticles concentrating on gene enhancing of PCSK9 for hyperlipidemia amelioration. Adv Sci (Weinh). 2023;10:e2300502.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, et al. CRISPR-Cas9 genome enhancing utilizing focused lipid nanoparticles for most cancers remedy. Sci Adv. 2020;6.

  • Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves strong and protracted in vivo genome enhancing. Cell Rep. 2018;22:2227–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gautam M, Jozic A, Su GL, Herrera-Barrera M, Curtis A, Arrizabalaga S, Tschetter W, Ryals RC, Sahay G. Lipid nanoparticles with PEG-variant floor modifications mediate genome enhancing within the mouse retina. Nat Commun. 2023;14:6468.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin H, Tune CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, et al. Therapeutic genome enhancing by mixed viral and non-viral supply of CRISPR system elements in vivo. Nat Biotechnol. 2016;34:328–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miller JB, Zhang S, Kos P, Xiong H, Zhou Ok, Perelman SS, Zhu H, Siegwart DJ. Non-Viral CRISPR/Cas gene enhancing in vitro and in vivo enabled by artificial nanoparticle Co-Supply of Cas9 mRNA and SgRNA. Angewandte Chemie (Worldwide Ed English). 2017;56:1059–63.

    Article 
    CAS 

    Google Scholar
     

  • Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle supply of CRISPR-Cas9 ribonucleoproteins for efficient tissue particular genome enhancing. Nat Commun. 2020;11:3232.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular supply and genome enhancing. Acc Chem Res. 2019;52:665–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, et al. In vivo neuronal gene enhancing by way of CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse fashions of Alzheimer’s illness. Nat Neurosci. 2019;22:524–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, Li M, Khashab NM. Endosomal escape and supply of CRISPR/Cas9 genome enhancing equipment enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140:143–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, Huang F, Wu C, Ping Y. Genome enhancing of mutant KRAS by supramolecular polymer-mediated supply of Cas9 ribonucleoprotein for colorectal most cancers remedy. J Management Launch. 2020;322:236–47.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee Ok, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang Ok, Rao A, Skinner C, et al. Nanoparticle supply of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA restore. Nat Biomed Eng. 2017;1:889–901.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with strong and unprecedented effectivity for cytosolic protein supply and CRISPR-Cas9 gene enhancing. Sci Adv. 2019;5:eaaw8922.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng S, Li X, Liu S, Chen J, Li M, Chew SY, Leong KW, Cheng D. Codelivery of CRISPR-Cas9 and Chlorin e6 for spatially managed tumor-specific gene enhancing with synergistic drug results. Sci Adv. 2020;6:eabb4005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, et al. Polymer-stabilized Cas9 nanoparticles and modified restore templates improve genome enhancing effectivity. Nat Biotechnol. 2020;38:44–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee J, Kang YK, Oh E, Jeong J, Im SH, Kim DK, Lee H, Kim S-G, Jung Ok, Chung HJ. Nano-assembly of a chemically tailor-made Cas9 ribonucleoprotein for in vivo gene enhancing and Most cancers immunotherapy. Chem Mater. 2022;34:547–61.

    Article 
    CAS 

    Google Scholar
     

  • Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, Wang H, Gong J, Palumbo CD, Ashton JM, et al. Scaffold-mediated CRISPR-Cas9 supply system for acute myeloid leukemia remedy. Sci Adv. 2021;7:eabg3217.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wan T, Pan Q, Ping Y. Microneedle-assisted genome enhancing: A transdermal technique of concentrating on NLRP3 by CRISPR-Cas9 for synergistic remedy of inflammatory pores and skin issues. Sci Adv. 2021;7:eabe2888.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Q, Wang C, Zheng Y, Zhao Y, Wang Y, Hao J, Zhao X, Yi Ok, Shi L, Kang C, Liu Y. Virus-like nanoparticle as a co-delivery system to reinforce efficacy of CRISPR/Cas9-based most cancers immunotherapy. Biomaterials. 2020;258:120275.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan Y, Yang J, Luan X, Liu X, Li X, Yang J, Huang T, Solar L, Wang Y, Lin Y, Tune Y. Close to-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene enhancing platform. Sci Adv. 2019;5:eaav7199.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen X, Chen Y, Xin H, Wan T, Ping Y. Close to-infrared optogenetic engineering of photothermal NanoCRISPR for programmable genome enhancing. Proc Natl Acad Sci U S A. 2020;117:2395–405.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peng LH, Wang MZ, Chu Y, Zhang L, Niu J, Shao HT, Yuan TJ, Jiang ZH, Gao JQ, Ning XH. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed remedy in opposition to melanoma. Sci Adv. 2020;6:eaba2735.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Yan G, Xiao Q, Zhou N, Chen H-R, Xia W, Peng L. Iontophoresis-driven microneedle arrays delivering Transgenic outer membrane vesicles in program that stimulates transcutaneous vaccination for Most cancers immunotherapy. Small Sci. 2023;3.

  • Zhao M, Cheng X, Shao P, Dong Y, Wu Y, Xiao L, Cui Z, Solar X, Gao C, Chen J, et al. Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 instruments re-educate tumor-associated macrophages for enhanced most cancers immunotherapy. Nat Commun. 2024;15:950.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Westin J, Sehn LH. CAR T cells as a second-line remedy for big B-cell lymphoma: a paradigm shift? Blood J Am Soc Hematol. 2022;139:2737–46.

    CAS 

    Google Scholar
     

  • Pan Ok, Farrukh H, Chittepu VCSR, Xu H, Pan C-x, Zhu Z. CAR race to most cancers immunotherapy: from CAR T, CAR NK to CAR macrophage remedy. J Exp Clin Most cancers Res. 2022;41:119.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) remedy: a overview research. Most cancers Gene Ther. 2022;29:1080–96.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bucher P, Feucht J. LINKing signaling domains to reinforce CAR T cells. Nat Most cancers. 2023;4:447–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Y, Zhou Y, Zhang M, Zhao H, Wei G, Ge W, Cui Q, Mu Q, Chen G, Han L, et al. Genetically modified CD7-targeting allogeneic CAR-T cell remedy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a section I scientific research. Cell Res. 2022;32:995–1007.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells utilizing artificial DNA nanocarriers. Nat Nanotechnol. 2017;12:813–20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Su Ok, Wu S, Lin L, He S, Yan X, Shi L, Liu S. One-Part cationic lipids for systemic mRNA supply to Splenic T cells. Angew Chem Int Ed Engl. 2024;63:e202405444.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene supply to human T cells. J Management Launch. 2018;282:140–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid Nanoparticle-Mediated mRNA supply for human CAR T cell engineering. Nano Lett. 2020;20:1578–89.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Billingsley MM, Hamilton AG, Mai D, Patel SK, Swingle KL, Sheppard NC, June CH, Mitchell MJ. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 2022;22:533–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in Circulating T cells in vivo. Nat Commun. 2020;11:6080.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McEvoy E, Han YL, Guo M, Shenoy VB. Hole junctions amplify Spatial variations in cell quantity in proliferating tumor spheroids. Nat Commun. 2020;11:6148.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He X, Xu C. Immune checkpoint signaling and most cancers immunotherapy. Cell Res. 2020;30:660–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, et al. Enhancing T cell remedy by TCR-signaling-responsive nanoparticle drug supply. Nat Biotechnol. 2018;36:707–16.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles that reshape the tumor milieu create a therapeutic window for efficient T-cell remedy in stable malignancies. Most cancers Res. 2018;78:3718–30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and extra: improvements within the fourth-generation CAR-T improvement. Mol Ther. 2023;31:3146–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Uslu U, Castelli S, June CH. CAR T cell mixture therapies to deal with most cancers. Most cancers Cell. 2024;42:1319–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu T, Xiao Y, Chen Z, Ding H, Chen S, Jiang G, Huang X. Inhalable nanovesicles loaded with a STING agonist improve CAR-T cell exercise in opposition to stable tumors within the lung. Nat Commun. 2025;16:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug launch and activation for most cancers remedy and immunotherapy. Adv Drug Deliv Rev. 2023;192:114624.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Z, Pan H, Luo Y, Yin T, Zhang B, Liao J, Wang M, Tang X, Huang G, Deng G, et al. Nanoengineered CAR-T biohybrids for stable tumor immunotherapy with microenvironment Photothermal-Reworking technique. Small. 2021;17:e2007494.

    Article 
    PubMed 

    Google Scholar
     

  • Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, et al. Photothermal nanofibres allow secure engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA supply and their breakthrough know-how for future purposes. Adv Drug Deliv Rev. 2023;200:114990.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Namiot ED, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Nanoparticles in scientific trials: evaluation of scientific trials, FDA approvals and use for COVID-19 vaccines. Int J Mol Sci. 2023;24.

  • Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of Most cancers nanomedicine: success, frustration, and hope. Cancers (Basel). 2019;11.

  • A Part 1, Open-Label, multicenter research to evaluate the protection and tolerability of mRNA-5671/V941 as a monotherapy and together with pembrolizumab in contributors with KRAS mutant superior or metastatic Non-Small cell lung most cancers, colorectal Most cancers or pancreatic adenocarcinoma. (ModernaTx I ed.; 2019).

  • Single-Arm A. Open-Label, exploratory research to judge the protection of RNA tumor vaccine injection alone/together with PD-1 inhibitor within the remedy of superior stable tumors with KRAS mutation. 2022.

  • A Part 1, Open-Label, multicenter, dose escalation research of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral injection alone and together with immune checkpoint Blockade. (AstraZeneca ed.; 2018).

  • Part A, Ib Open-Label I. Multi-Middle, Dose-Escalation research to research the protection, pharmacokinetics and preliminary efficacy of intravenous NBF 006 in sufferers with Non-Small cell lung, pancreatic, or colorectal Most cancers adopted by a dose growth research in sufferers with KRAS-Mutated Non-Small cell lung Most cancers. 2019.

  • Potential A. Open-label, single middle, dose discovering section I-study with Atu027 (an SiRNA Formulation) in topics with superior stable Most cancers. 2009.

  • EphA2 Gene Concentrating on Utilizing Impartial Liposomal Small Interfering RNA Supply. A Part I Medical Trial. (Gateway for Most cancers R, Institutional Funding for Federally Supported Medical T, Nationwide Most cancers I eds.); 2012.

  • Multicenter Part A. I Research of MRX34, MicroRNA miR-RX34 liposomal injection. Most cancers Prevention Analysis Institute of T ed.; 2013.

  • Part A. I, Dose-Escalating research of the protection of intravenous CALAA-01 in adults with stable tumors refractory to Customary-of-Care therapies. 2008.

  • Part I. Research of mesenchymal stromal Cells-Derived exosomes with KrasG12D SiRNA for metastatic pancreas Most cancers sufferers harboring KrasG12D mutation. 2018.

  • Halwani AA. Improvement of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics 2022, 14.

  • Das RP, Gandhi VV, Singh BG, Kunwar A. Passive and energetic drug concentrating on: position of nanocarriers in rational design of anticancer formulations. Curr Pharm Des. 2019;25:3034–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Broncy L, Paterlini-Bréchot P. Medical impression of Circulating tumor cells in sufferers with localized prostate most cancers. Cells. 2019;8:676.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Guo Q, Cui D. Current advances in nanotechnology utilized to biosensors. Sensors. 2009;9:1033–53.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Present tendencies and future views of nanomedicine for the administration of colon most cancers. Eur J Pharmacol. 2021;910:174464.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang X-J. Current progress in mitochondria-targeting-based nanotechnology for most cancers remedy. Nanoscale. 2021;13:7108–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv Ok, Yu Z, Wang J, Li N, Wang A, Xue T, Wang Q, Shi Y, Han L, Qin W, et al. Discovery of Ketal-Ester ionizable lipid nanoparticle with decreased hepatotoxicity, enhanced spleen tropism for mRNA vaccine supply. Adv Sci (Weinh). 2024;11:e2404684.

    Article 
    PubMed 

    Google Scholar
     

  • Patil SM, Daram A, Kunda NK. 3D spheroid mannequin reveals enhanced efficacy of mannose-decorated nanoparticles for TB remedy. Nanomed (Lond). 2025;20:777–89.

    Article 

    Google Scholar
     

  • Ou BS, Baillet J, Picece V, Gale EC, Powell AE, Saouaf OM, Yan J, Nejatfard A, Lopez Hernandez H, Appel EA. Nanoparticle-Conjugated Toll-Like receptor 9 agonists enhance the efficiency, sturdiness, and breadth of COVID-19 vaccines. ACS Nano. 2024;18:3214–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee E, Jeon H, Lee M, Ryu J, Kang C, Kim S, Jung J, Kwon Y. Molecular origin of AuNPs-induced cytotoxicity and mechanistic research. Sci Rep. 2019;9:2494.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding Ok, Jiang HT, Gong YK. Sensible MSN-Drug-Supply system for tumor cell concentrating on and tumor microenvironment launch. ACS Appl Mater Interfaces. 2021;13:42522–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong TY, Yan N, Kwan KKL, Pan Y, Liu J, Xiao Y, Wu L, Lam H. Comparative proteomic evaluation reveals the completely different hepatotoxic mechanisms of human hepatocytes uncovered to silver nanoparticles. J Hazard Mater. 2023;445:130599.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sharma A, Sah N, Kannan S, Kannan RM. Focused drug supply for maternal and perinatal well being: challenges and alternatives. Adv Drug Deliv Rev. 2021;177:113950.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J, Huang H, Jia M, Chen S, Wang F, He G, Wu C, Lou Ok, Zheng X, Zhang H, et al. Autologous platelet supply of SiRNAs by autologous plasma protein self-assembled nanoparticles for the remedy of acute kidney damage. J Nanobiotechnol. 2025;23:256.

    Article 
    CAS 

    Google Scholar
     

  • Yong H, Tian Y, Li Z, Wang C, Zhou D, Liu J, Huang X, Li J. Extremely branched Poly(β-amino ester)s for environment friendly mRNA supply and nebulization remedy of silicosis. Adv Mater 2025:e2414991.

  • Jakic Ok, Selc M, Razga F, Nemethova V, Mazancova P, Havel F, Sramek M, Zarska M, Proska J, Masanova V, et al. Lengthy-Time period accumulation, organic results and toxicity of BSA-Coated gold nanoparticles within the mouse liver, spleen, and kidneys. Int J Nanomed. 2024;19:4103–20.

    Article 

    Google Scholar
     

  • Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, Rosu-Myles M, He R, Li X. Subcutaneous immunization with Recombinant adenovirus expressing influenza A nucleoprotein protects mice in opposition to deadly viral problem. Hum Vaccin Immunother. 2012;8:425–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dobrovolskaia MA, Aggarwal P, Corridor JB, McNeil SE. Preclinical research to know nanoparticle interplay with the immune system and its potential results on nanoparticle biodistribution. Mol Pharm. 2008;5:487–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yu Ok, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, et al. Deep studying enhanced close to Infrared-II imaging and Picture-Guided small interfering ribonucleic acid remedy of ischemic stroke. ACS Nano. 2025;19:10323–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo S, Agarwal T, Tune S, Sarkar Ok, Zhang LG. Improvement of novel multi-responsive 4D printed good nanocomposites with polypyrrole coated iron oxides for distant and adaptive transformation. Mater Horiz 2025.

  • Störtz F, Minary P. CrisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 2021;49:D855–61.

    Article 
    PubMed 

    Google Scholar
     

  • Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Transcriptome-wide off-target RNA enhancing induced by CRISPR-guided DNA base editors. Nature. 2019;569:433–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive good Nanoparticles-Based mostly CRISPR-Cas supply for therapeutic genome enhancing. Int J Mol Sci. 2021;22.

  • You S, Zuo L, Li W. Optimizing the time of doxil injection to extend the drug retention in transplanted murine mammary tumors. Int J Nanomed. 2010;5:221–9.

    Article 
    CAS 

    Google Scholar
     

  • Baeza A. Tumor focused nanocarriers for immunotherapy. Molecules 2020, 25.

  • Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, et al. Mesoporous silica nanoparticles as pH-Responsive provider for the immune-Activating drug resiquimod improve the native immune response in mice. ACS Nano. 2021;15:4450–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan SN, Han P, Chaudhury R, Bickerton S, Lee JS, Calderon B, Pellowe A, Gonzalez A, Fahmy T. Direct comparability of B cell floor receptors as therapeutic targets for nanoparticle supply of BTK inhibitors. Mol Pharm. 2021;18:850–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated Core-Shell hybrid nanovehicles for focused and pH-Triggered supply of arsenic trioxide into glioma. Mol Pharm. 2019;16:786–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu X, Yu C, Wu X, Cui Y, Liu X, Jin Y, Li Y, Wang L. Validation of an HPLC-CAD technique for willpower of lipid content material in LNP-Encapsulated COVID-19 mRNA vaccines. Vaccines (Basel). 2023;11.

  • Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Focused LNPs ship IL-15 superagonists mRNA for precision most cancers remedy. Biomaterials. 2025;317:123047.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, Gong S. pH-Responsive polymer nanoparticles for environment friendly supply of Cas9 ribonucleoprotein with or with out donor DNA. Adv Mater. 2022;34:2110618.

    Article 
    CAS 

    Google Scholar
     

  • Donahue ND, Acar H, Wilhelm S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang J, Zhang L, Gao H, Liu Y, Zhang Q, Ran R, Zhang Z, He Q. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to beat multidrug resistance, improve anti-tumor effectivity and cut back toxicity. Drug Deliv. 2016;23:1130–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Patil V, Patel A. Biodegradable nanoparticles: A latest method and purposes. Curr Drug Targets. 2020;21:1722–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *