Richardson, O. W. A mechanical impact accompanying magnetization. Phys. Rev. (Ser. I) 26, 248 (1908).
Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 18, 696 (1915).
Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73 (2022).
Dornes, C. et al. The ultrafast Einstein–de Haas impact. Nature 565, 209 (2019).
Zhu, H. et al. Commentary of chiral phonons. Science 359, 579 (2018).
Chen, H. et al. Chiral phonon diode impact in chiral crystals. Nano Lett. 22, 1688 (2022).
Kim, Ok. et al. Chiral-phonon-activated spin Seebeck impact. Nat. Mater. 22, 322 (2023).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946 (2023).
Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological proof for the phonon Corridor impact. Phys. Rev. Lett. 95, 155901 (2005).
Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Corridor impact. Phys. Rev. Lett. 105, 225901 (2010).
Juraschek, D. M. & Spaldin, N. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).
Cheng, B. et al. A big efficient phonon magnetic second in a Dirac semimetal. Nano Lett. 20, 5591 (2020).
Baydin, A. et al. Magnetic management of sentimental chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).
Grissonnanche, G. et al. Chiral phonons within the pseudogap part of cuprates. Nat. Phys. 16, 1108 (2020).
Park, S. & Yang, B. J. Phonon angular momentum Corridor impact. Nano Lett. 20, 7694 (2020).
Jeong, S. G. et al. Unconventional interlayer trade coupling by way of chiral phonons in artificial magnetic oxide heterostructures. Sci. Adv. 8, abm4005 (2022).
Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).
Basini, M. et al. Terahertz electric-field pushed dynamical multiferroicity in SrTiO3. Nature 628, 534 (2024).
Iliev, M. N. et al. Raman spectroscopy of SrRuO3 close to the paramagnetic-to-ferromagnetic part transition. Phys. Rev. B 59, 364 (1999).
Kiyama, T., Yoshimura, Ok., Kosuge, Ok., Ikeda, Y. & Bando, Y. Invar impact of SrRuO3: itinerant electron magnetism of Ru 4d electrons. Phys. Rev. B 54, R756 (1996).
Luo, J. et al. Giant efficient magnetic fields from chiral phonons in rare-earth halides. Science 382, 698 (2023).
Jeong, S. G. et al. Part instability amid dimensional crossover in synthetic oxide crystal. Phys. Rev. Lett. 124, 026401 (2020).
Roth, T. et al. Temperature dependence of laser-induced demagnetization in Ni: a key for figuring out the underlying mechanism. Phys. Rev. 2, 021006 (2012).
Koopmans, B. et al. Explaining the paradoxical variety of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259 (2010).
Muller, G. M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nat. Mater. 8, 56 (2008).
Cho, S. W. et al. Tailoring topological Corridor impact in SrRuO3/SrTiO3 superlattices. Acta Mater. 216, 117153 (2021).
Bruno, P. Concept of interlayer magnetic coupling. Phys. Rev. B 52, 1 (1995).
Obata, T., Manako, T., Shimakawa, Y. & Kubo, Y. Tunneling magnetoresistance at as much as 270 Ok in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 junctions with 1.6-nm-thick boundaries. Appl. Phys. Lett. 74, 2 (1999).
Bergeard, N. et al. Sizzling-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).
Koreeda, A., Takano, R. & Saikan, S. Second sound in SrTiO3. Phys. Rev. Lett. 99, 265502 (2007).
Bern, F. et al. Structural, magnetic and electrical properties of SrRuO3 movies and SrRuO3/SrTiO3 superlattices. J. Phys. Condens. Matter 25, 496003 (2013).
Schmising, Ok. et al. Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404 (2008).
Ma, T. P. et al. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) via discipline orientation dependent measurements. J. Appl. Phys. 117, 013903 (2015).
Zhang, X.-W., Ren, Y., Wang, C., Cao, T. & Xiao, D. Gate-tunable phonon magnetic second in bilayer graphene. Phys. Rev. Lett. 130, 226302 (2023).
Xiao, C., Ren, Y. & Xiong, B. Adiabatically induced orbital magnetization. Phys. Rev. B 103, 115432 (2021).
Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic second from digital topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Geilhufe, R. M. & Hergert, W. Electron magnetic second of transient chiral phonons in KTaO3. Phys. Rev. B 107, L020406 (2023).
Juraschek, D. M., Neuman, T. & Narang, P. Big efficient magnetic fields from optically pushed chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).
Chaudhary, S., Juraschek, D. M., Rodriguez-Vega, M. & Fiete, G. A. Big efficient magnetic moments of chiral phonons from orbit-lattice coupling. Preprint at https://arxiv.org/abs/2306.11630 (2023).
Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett impact. Nature 628, 540 (2024).
Choi, I. H. et al. Big enhancement of electron–phonon coupling in dimensionality-controlled SrRuO3 heterostructures. Adv. Sci. 10, 2300012 (2023).
Jeong, S. G. et al. Propagation management of octahedral tilt in SrRuO3 by way of synthetic heterostructuring. Adv. Sci. 7, 2001643 (2020).
Jeong, S. G., Search engine marketing, A. & Choi, W. S. Atomistic engineering of phonons in practical oxide heterostructures. Adv. Sci. 9, 2103403 (2022).
Lee, S., Apgar, B. A. & Martin, L. W. Robust visible-light absorption and hot-carrier injection in TiO2/SrRuO3 heterostructures. Adv. Vitality Mater. 3, 1084 (2013).