CEPI. CEPI Technique for the Second Enterprise Cycle 2022–2026 (CEPI, 2021); https://static.cepi.internet/downloads/2023-12/CEPI-2022-2026-Technique-v3-Jan21_0.pdf
Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
Lee, I. T. et al. Security and immunogenicity of a part 1/2 randomized medical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in wholesome adults: interim evaluation. Nat. Commun. 14, 3631 (2023).
Naaber, P. et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal potential examine. Lancet Reg. Well being Eur. 10, 100208 (2021).
Pegu, A. et al. Sturdiness of mRNA-1273 vaccine-induced antibodies towards SARS-CoV-2 variants. Science 373, 1372–1377 (2021).
Soucheray, S. Moderna studies RSV vaccine 50% efficient after 18 months (2024); https://www.cidrap.umn.edu/respiratory-syncytial-virus-rsv/moderna-reports-rsv-vaccine-50-effective-after-18-months
Lee, J., Woodruff, M. C., Kim, E. H. & Nam, J.-H. Knife’s edge: balancing immunogenicity and reactogenicity in mRNA vaccines. Exp. Mol. Med. 55, 1305–1313 (2023).
Mulligan, M. J. et al. Part I/II examine of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).
Basu, P. et al. Vaccine efficacy towards persistent human papillomavirus (HPV) 16/18 an infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in ladies in India: a multicentre, potential, cohort examine. Lancet Oncol. 22, 1518–1529 (2021).
Slifka, M. Ok. & Amanna, I. J. Function of multivalency and antigenic threshold in producing protecting antibody responses. Entrance. Immunol. 10, 956 (2019).
Amanna, I. J., Carlson, N. E. & Slifka, M. Ok. Length of humoral immunity to frequent viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).
Bhattacharya, D. Instructing sturdy humoral immunity for COVID-19 and different vaccinable ailments. Immunity 55, 945–964 (2022).
Bachmann, M. F. et al. The affect of antigen group on B cell responsiveness. Science 262, 1448–1451 (1993).
Bachmann, M. F. & Jennings, G. T. Vaccine supply: a matter of dimension, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).
Zakeri, B. et al. Peptide tag forming a fast covalent bond to a protein, by way of engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).
Partitions, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e17 (2020).
Fougeroux, C. et al. Capsid-like particles embellished with the SARS-CoV-2 receptor-binding area elicit sturdy virus neutralization exercise. Nat. Commun. 12, 324 (2021).
Thrane, S. et al. Bacterial superglue permits straightforward growth of environment friendly virus-like particle based mostly vaccines. J. Nanobiotechnol. 14, 30 (2016).
Smit, M. J. et al. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, part 1 medical trial of the SARS-CoV-2 vaccine ABNCoV2. Lancet Microbe 4, e140–e148 (2023).
Tursi, N. J., Xu, Z., Kulp, D. W. & Weiner, D. B. Gene-encoded nanoparticle vaccine platforms for in vivo meeting of multimeric antigen to advertise adaptive immunity. WIREs Nanomed. Nanobiotechnol. 15, e1880 (2023).
Lu, J. et al. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a robust antiviral-like immune response in mice. Cell Res. 30, 936–939 (2020).
Solar, W. et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits sturdy and sturdy protecting immunity towards SARS-CoV-2 in mice. Sign Transduct. Goal. Ther. 6, 340 (2021).
Brandys, P. et al. A mRNA vaccine encoding for a RBD 60-mer nanoparticle elicits neutralizing antibodies and protecting immunity towards the SARS-CoV-2 Delta variant in transgenic K18-hACE2 mice. Entrance. Immunol. 13, 912898 (2022).
Chackerian, B. Virus-like particles: versatile platforms for vaccine growth. Professional Rev. Vaccines 6, 381–390 (2007).
Hoffmann, M. A. G. et al. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that enhance mRNA vaccines. Cell 186, 2380–2391.e9 (2023).
Mendy, M. et al. Observational examine of vaccine efficacy 24 years after the beginning of hepatitis B vaccination in two Gambian villages: no want for a booster dose. PLoS ONE 8, e58029 (2013).
Valéa, I. et al. Immune response to the hepatitis B antigen within the RTS,S/AS01 malaria vaccine, and co-administration with pneumococcal conjugate and rotavirus vaccines in African youngsters: a randomized managed trial. Hum. Vaccines Immunother. 14, 1489–1500 (2018).
Schiller, J. & Lowy, D. Explanations for the excessive efficiency of HPV prophylactic vaccines. Vaccine 36, 4768–4773 (2018).
Sagara, I. et al. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in wholesome Malian adults; a part 1, randomised, managed trial. Lancet Infect. Dis. 23, 1266–1279 (2023).
Bruun, T. U. J., Andersson, A.-M. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to boost plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).
Rahikainen, R. et al. Overcoming symmetry mismatch in vaccine nanoassembly by way of spontaneous amidation. Angew. Chem. Int. Ed. 60, 321–330 (2021).
Kumar, S., Sunagar, R. & Gosselin, E. Bacterial protein toll-like-receptor agonists: a novel perspective on vaccine adjuvants. Entrance. Immunol. 10, 1144 (2019).
Wang, J. Y. J. et al. Bettering the secretion of designed protein assemblies by way of destructive design of cryptic transmembrane domains. Proc. Natl Acad. Sci. USA 120, e2214556120 (2023).
Silveira, M. M., Moreira, G. M. S. G. & Mendonça, M. DNA vaccines towards COVID-19: views and challenges. Life Sci. 267, 118919 (2021).
Maslow, J. N. et al. DNA vaccines for epidemic preparedness: SARS-CoV-2 and past. Vaccines 11, 1016 (2023).
Khobragade, A. et al. Efficacy, security, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy outcomes of a part 3, randomised, double-blind, placebo-controlled examine in India. Lancet 399, 1313–1321 (2022).
Sadoff, J. et al. Security and efficacy of single-dose Ad26.COV2.S vaccine towards Covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).
Andrade, V. M. et al. Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal fashions. Hum. Vaccines Immunother. 19, 2281733 (2023).
Woldemeskel, B. A., Garliss, C. C. & Blankson, J. N. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that acknowledge SARS-CoV-2 variants and HCoV-NL63. J. Clin. Make investments. 131, e149335 (2021).
Freyn, A. W. et al. Antigen modifications enhance nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol. Ther. Strategies Clin. Dev. 22, 84–95 (2021).
Melzi, E. et al. Membrane-bound mRNA immunogens decrease the edge to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 55, 2168–2186.e6 (2022).
Hendricks, G. G. et al. Computationally designed mRNA-launched protein nanoparticle vaccines. Immunity 55, 2168–2186.e6 (2024).
Israel, A. et al. Elapsed time since BNT162b2 vaccine and danger of SARS-CoV-2 an infection: take a look at destructive design examine. Brit. Med. J. 375, e067873 (2021).
Sudharsanan, N., Favaretti, C., Hachaturyan, V., Bärnighausen, T. & Vandormael, A. Results of side-effect danger framing methods on COVID-19 vaccine intentions: a randomized managed trial. eLife 11, e78765 (2022).
Kjaer, S. Ok. et al. Closing evaluation of a 14-year long-term follow-up examine of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in girls from 4 Nordic nations. eClinicalMedicine 23, 100401 (2020).
Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells should not durably established within the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. 31, 235–244 (2024).
Bloom, Ok., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious ailments. Gene Ther. 28, 117–129 (2021).
Maruggi, G., Ulmer, J. B., Rappuoli, R. & Yu, D. Self-amplifying mRNA-based vaccine know-how and its mode of motion. Curr. Subjects Microbiol. Immunol. 440, 31–70 (2022).
Swetha, Ok. et al. Current advances within the lipid nanoparticle-mediated supply of mRNA vaccines. Vaccines 11, 658 (2023).
Ross, J. & Sullivan, T. D. Half-lives of beta and gamma globin messenger RNAs and of protein artificial capability in cultured human reticulocytes. Blood 66, 1149–1154 (1985).
Gallie, D. R. The cap and poly(A) tail operate synergistically to control mRNA translational effectivity. Genes Dev. 5, 2108–2116 (1991).
Karikó, Ok. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with elevated translational capability and organic stability. Mol. Ther. 16, 1833–1840 (2008).
Thess, A. et al. Sequence-engineered mRNA with out chemical nucleoside modifications permits an efficient protein remedy in giant animals. Mol. Ther. 23, 1456–1464 (2015).
Love, Ok. T. et al. Lipid-like supplies for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).
Aljabbari, A. et al. Elucidating the nanostructure of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles. J. Colloid Interface Sci. 633, 907–922 (2023).
Ponnudurai, T. et al. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98, 165–173 (1989).
Ramjith, J. et al. Quantifying reductions in Plasmodium falciparum infectivity to mosquitos: a pattern dimension calculator to tell medical trials on transmission-reducing interventions. Entrance. Immunol. 13, 899615 (2022).
McLeod, B. et al. Vaccination with a structure-based stabilized model of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses. Immunity 55, 1680–1692.e8 (2022).