A translational framework to DELIVER nanomedicines to the clinic

A translational framework to DELIVER nanomedicines to the clinic


  • Park, Ok. The start of the tip of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Most cancers nanomedicine. Nat. Rev. Most cancers 22, 550–556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youn, Y. S. & Bae, Y. H. Views on the previous, current, and way forward for most cancers nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leong, H. S. et al. On the problem of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammers, T. et al. Most cancers nanomedicine: is concentrating on our goal? Nat. Rev. Mater. 1, 16069 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes realized. J. Management. Launch 160, 117–134 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, X. et al. Present approaches of nanomedicines out there and numerous stage of medical translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • COVID-19 vaccination, world information. WHO https://information.who.int/dashboards/covid19/vaccines?n=c (2024).

  • Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).

  • Milane, L. & Amiji, M. Medical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impression on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to extend the effectivity of translating nanomedicine formulations to sufferers. Skilled Opin. Drug Discov. 16, 235–254 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Meant for Drug Supply (ed. McNeil, S. E.) 3–16 (Springer, 2018).

  • Metselaar, J. M. & Lammers, T. Challenges in nanomedicine medical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hare, J. I. et al. Challenges and methods in anti-cancer nanomedicine improvement: an business perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germain, M. et al. Delivering the ability of nanomedicine to sufferers at the moment. J. Management. Launch 326, 164–171 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. H., Grey, A. B. C. & Patra, H. Ok. Nanomedicine: controlling nanoparticle clearance for translational success. Developments Pharmacol. Sci. 43, 709–711 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kendall, M. & Lynch, I. Lengthy-term monitoring for nanomedicine implants and medicines. Nat. Nanotechnol. 11, 206–210 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crist, R. M. et al. Widespread pitfalls in nanotechnology: classes realized from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. & Kataoka, Ok. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the following technology. J. Am. Chem. Soc. 143, 538–559 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions within the improvement of nanocarriers: an modern statistical method for formulation selections. Sci. Rep. 9, 10738 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N., Solar, H., Dong, J. & Ouyang, D. PharmDE: a brand new knowledgeable system for drug–excipient compatibility analysis. Int. J. Pharm. 607, 120962 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the particular composition of polymeric nanocapsules: a top quality management evaluation. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparability of liposomal formulations of doxorubicin with drug administered in free type: altering toxicity profiles. Drug. Saf. 24, 903–920 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrington, Ok. J. et al. Section I–II research of pegylated liposomal cisplatin (SPI-077) in sufferers with inoperable head and neck most cancers. Ann. Oncol. 12, 493–496 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troiano, G. et al. A top quality by design method to growing and manufacturing polymeric nanoparticle drug merchandise. AAPS J. 18, 1354–1365 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mast, M.-P. et al. Nanomedicine on the crossroads—a fast information for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo hyperlink—business perspective. AAPS 21, 19 (2019).

    Article 

    Google Scholar
     

  • Yuan, D. et al. Physiologically based mostly pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Advances in 3D bioprinting for most cancers biology and precision drugs: from matrix design to utility. Adv. Healthc. Mater. 11, 2200690 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article 

    Google Scholar
     

  • Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a pattern evaluation of in vitro and in vivo research. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the lacking hyperlink? Biotechnol. Adv. 35, 889–904 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Management. Launch 354, 794–809 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, H. et al. Survey of medical translation of most cancers nanomedicines—classes realized from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, F., Wang, Y. & Gao, H. Progress and challenges within the translation of most cancers nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Most cancers nanomedicine towards medical translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, R. M. Affected person-derived orthotopic xenografts: higher mimic of metastasis than subcutaneous xenografts. Nat. Rev. Most cancers 15, 451–452 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning past animal fashions with human cells, organoids, and AI/ML-based approaches. J. Clin. Make investments. 133, e175824 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. Learn how to design preclinical research in nanomedicine and cell remedy to maximise the prospects of medical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does analysis reproducibility imply? Sci. Transl. Med. 8, 341ps12 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ke, W. et al. Developments and patterns in most cancers nanotechnology analysis: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up applied sciences: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Huang, P., Yang, R. & Deng, H. mRNA most cancers vaccines: development and boosting methods. ACS Nano 17, 19550–19580 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. et al. The potential of mRNA vaccines in most cancers nanomedicine and immunotherapy. Developments Immunol. 45, 20–31 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, S. et al. Nanoparticle-based chimeric antigen receptor remedy for most cancers immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology improvement to beat present roadblocks in CAR-T remedy for strong tumors. Entrance. Immunol. 13, 849759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell remedy in treating strong tumor. Pharmacol. Res. 184, 106454 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Environment friendly non-viral CAR-T cell technology by way of silicon-nanotube-mediated transfection. Mater. At this time 63, 8–17 (2023).

    Article 

    Google Scholar
     

  • Hu, T., Kumar, A. R. Ok., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Strategies https://doi.org/10.1002/smtd.202301300 (2023).

  • López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Customized most cancers nanomedicine: overcoming organic boundaries for intracellular supply of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).

    Article 

    Google Scholar
     

  • Solar, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Management. Launch 164, 156–169 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DepoCyte—withdrawal of utility for variation to advertising authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).

  • Ramanathan, R. Ok. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in sufferers with superior strong tumors: a pilot research. Clin. Most cancers Res. 23, 3638–3648 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Might, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Angeli, F. et al. Optimum use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shitara, Ok. et al. Nab-paclitaxel versus solvent-based paclitaxel in sufferers with beforehand handled superior gastric most cancers (ABSOLUTE): an open-label, randomised, non-inferiority, section 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, section III non-inferiority research evaluating NK105 and paclitaxel in metastatic or recurrent breast most cancers sufferers. Br. J. Most cancers 120, 475–480 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosaka, Y. et al. Multicenter randomized open-label section II medical research evaluating outcomes of NK105 and paclitaxel in superior or recurrent breast most cancers. Int. J. Nanomed. 17, 4567 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in sufferers with superior strong tumors utilizing 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. A section I dose-finding and pharmacokinetics research of CPC634 (nanoparticle entrapped docetaxel) in sufferers with superior strong tumors. J. Clin. Oncol. 37, 3026–3026 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. Intratumoral comparability of nanoparticle entrapped docetaxel (CPC634) with typical docetaxel in sufferers with strong tumors. Clin. Most cancers Res. 26, 3537–3545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingrid, B. et al. CINOVA: a section II research of CPC634 (nanoparticulate docetaxel) in sufferers with platinum resistant recurrent ovarian most cancers. Int. J. Gynecol. Most cancers 33, 1247 (2023).

    Article 

    Google Scholar
     

  • Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory hole. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for medical utility: present and future views. Biomater. Sci. 8, 4653–4664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemmrich, E. & McNeil, S. Lively ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we prepared? Am. J. Well being Syst. Pharm. 78, 1047–1056 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogel, D. B. Elements related to medical trials that fail and alternatives for bettering the chance of success: a assessment. Contemp. Clin. Trials Commun. 11, 156–164 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heart for Drug Analysis and Analysis Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain

  • Van Norman, G. A. Medication, gadgets, and the FDA: Half 1: an summary of approval processes for medication. J. Am. Coll. Cardiol. 1, 170–179 (2016).


    Google Scholar
     

  • Klein, Ok. et al. A practical regulatory method for complicated generics by means of the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The beginning-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, A. et al. Fast response by means of the entrepreneurial capabilities of educational scientists. Nat. Nanotechnol. 17, 802–807 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing college spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).

    Article 

    Google Scholar
     

  • Dayton, L. Coronavirus vaccine front-runner Moderna places MIT chemist-entrepreneur Robert Langer within the highlight. Nature Index https://www.nature.com/nature-index/information/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).

  • Langer, R. A private account of translating discoveries in an instructional lab. Nat. Biotechnol. 31, 487–489 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokesch, S. The Edison of medication. Harv. Bus. Rev. 95, 134–143 (2017).


    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to sufferers: a sensible information. Nanomedicine 11, 983–992 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, Ok. A. mRNA vaccines for infectious illnesses: ideas, supply and medical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, E. R. What the COVID-19 pandemic revealed about mental property. Nat. Biotechnol. 40, 1428–1430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, M. et al. Minimal data reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilkenny, C. et al. Bettering bioscience analysis reporting: the ARRIVE tips for reporting animal analysis. J. Pharmacol. Pharmacother. 1, 94–99 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heart for Drug Analysis and Analysis & Heart for Biologics Analysis and Analysis Steering for Business: Setting Evaluation of Human Drug and Biologics Purposes (US Meals & Drug Administration, 1998); https://www.fda.gov/media/70809/obtain

  • Heart for Drug Analysis and Analysis Steering for Business: Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain

  • Chetwynd, A. J., Wheeler, Ok. E. & Lynch, I. Greatest observe in reporting corona research: Minimal details about Nanomaterial Biocorona Experiments (MINBE). Nano At this time 28, 100758 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjidemetriou, M. et al. In vivo biomolecule corona round blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, Z. et al. Machine studying predicts the purposeful composition of the protein corona and the mobile recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine improvement. Matter 6, 1071–1081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arden, N. S. et al. Business 4.0 for pharmaceutical manufacturing: making ready for the sensible factories of the long run. Int. J. Pharm. 602, 120554 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Younger, H. et al. Towards the scalable, speedy, reproducible, and cost-effective synthesis of customized nanomedicines on the level of care. Nano Lett. 24, 920–928 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vlieger, J. S. B. et al. Report of the AAPS steering discussion board on the FDA draft steering for business: ‘drug merchandise, together with organic merchandise, that include nanomaterials’. AAPS J. 21, 56 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marchant, G. E., Sylvester, D. J., Abbott, Ok. W. & Danforth, T. L. Worldwide harmonization of regulation of nanomedicine. Stud. Ethics Legislation Technol. https://doi.org/10.2202/1941-6008.1120 (2010).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *