Park, Ok. The start of the tip of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).
Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Most cancers nanomedicine. Nat. Rev. Most cancers 22, 550–556 (2022).
Youn, Y. S. & Bae, Y. H. Views on the previous, current, and way forward for most cancers nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).
Leong, H. S. et al. On the problem of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).
Lammers, T. et al. Most cancers nanomedicine: is concentrating on our goal? Nat. Rev. Mater. 1, 16069 (2016).
Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes realized. J. Management. Launch 160, 117–134 (2012).
Shan, X. et al. Present approaches of nanomedicines out there and numerous stage of medical translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).
COVID-19 vaccination, world information. WHO https://information.who.int/dashboards/covid19/vaccines?n=c (2024).
Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).
Milane, L. & Amiji, M. Medical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impression on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).
Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to extend the effectivity of translating nanomedicine formulations to sufferers. Skilled Opin. Drug Discov. 16, 235–254 (2021).
Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Meant for Drug Supply (ed. McNeil, S. E.) 3–16 (Springer, 2018).
Metselaar, J. M. & Lammers, T. Challenges in nanomedicine medical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).
Tang, H. et al. Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).
Hare, J. I. et al. Challenges and methods in anti-cancer nanomedicine improvement: an business perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).
Germain, M. et al. Delivering the ability of nanomedicine to sufferers at the moment. J. Management. Launch 326, 164–171 (2020).
Zhu, G. H., Grey, A. B. C. & Patra, H. Ok. Nanomedicine: controlling nanoparticle clearance for translational success. Developments Pharmacol. Sci. 43, 709–711 (2022).
Kendall, M. & Lynch, I. Lengthy-term monitoring for nanomedicine implants and medicines. Nat. Nanotechnol. 11, 206–210 (2016).
Crist, R. M. et al. Widespread pitfalls in nanotechnology: classes realized from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).
Li, J. & Kataoka, Ok. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the following technology. J. Am. Chem. Soc. 143, 538–559 (2020).
Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions within the improvement of nanocarriers: an modern statistical method for formulation selections. Sci. Rep. 9, 10738 (2019).
Wang, N., Solar, H., Dong, J. & Ouyang, D. PharmDE: a brand new knowledgeable system for drug–excipient compatibility analysis. Int. J. Pharm. 607, 120962 (2021).
Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the particular composition of polymeric nanocapsules: a top quality management evaluation. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).
Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparability of liposomal formulations of doxorubicin with drug administered in free type: altering toxicity profiles. Drug. Saf. 24, 903–920 (2001).
Harrington, Ok. J. et al. Section I–II research of pegylated liposomal cisplatin (SPI-077) in sufferers with inoperable head and neck most cancers. Ann. Oncol. 12, 493–496 (2001).
Troiano, G. et al. A top quality by design method to growing and manufacturing polymeric nanoparticle drug merchandise. AAPS J. 18, 1354–1365 (2016).
Mast, M.-P. et al. Nanomedicine on the crossroads—a fast information for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).
Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo hyperlink—business perspective. AAPS 21, 19 (2019).
Yuan, D. et al. Physiologically based mostly pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).
Jung, M. et al. Advances in 3D bioprinting for most cancers biology and precision drugs: from matrix design to utility. Adv. Healthc. Mater. 11, 2200690 (2022).
Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).
Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a pattern evaluation of in vitro and in vivo research. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).
Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the lacking hyperlink? Biotechnol. Adv. 35, 889–904 (2017).
Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Management. Launch 354, 794–809 (2023).
He, H. et al. Survey of medical translation of most cancers nanomedicines—classes realized from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).
Tong, F., Wang, Y. & Gao, H. Progress and challenges within the translation of most cancers nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).
Zhang, P. et al. Most cancers nanomedicine towards medical translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2023).
Hoffman, R. M. Affected person-derived orthotopic xenografts: higher mimic of metastasis than subcutaneous xenografts. Nat. Rev. Most cancers 15, 451–452 (2015).
Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning past animal fashions with human cells, organoids, and AI/ML-based approaches. J. Clin. Make investments. 133, e175824 (2023).
Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. Learn how to design preclinical research in nanomedicine and cell remedy to maximise the prospects of medical translation. Nat. Biomed. Eng. 2, 797–809 (2018).
Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does analysis reproducibility imply? Sci. Transl. Med. 8, 341ps12 (2016).
Ke, W. et al. Developments and patterns in most cancers nanotechnology analysis: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).
Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up applied sciences: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).
Liu, X., Huang, P., Yang, R. & Deng, H. mRNA most cancers vaccines: development and boosting methods. ACS Nano 17, 19550–19580 (2023).
Pan, S. et al. The potential of mRNA vaccines in most cancers nanomedicine and immunotherapy. Developments Immunol. 45, 20–31 (2024).
Shin, S. et al. Nanoparticle-based chimeric antigen receptor remedy for most cancers immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).
Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology improvement to beat present roadblocks in CAR-T remedy for strong tumors. Entrance. Immunol. 13, 849759 (2022).
Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell remedy in treating strong tumor. Pharmacol. Res. 184, 106454 (2022).
Chen, Y. et al. Environment friendly non-viral CAR-T cell technology by way of silicon-nanotube-mediated transfection. Mater. At this time 63, 8–17 (2023).
Hu, T., Kumar, A. R. Ok., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Strategies https://doi.org/10.1002/smtd.202301300 (2023).
López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Customized most cancers nanomedicine: overcoming organic boundaries for intracellular supply of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).
Solar, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Management. Launch 164, 156–169 (2012).
DepoCyte—withdrawal of utility for variation to advertising authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).
Ramanathan, R. Ok. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in sufferers with superior strong tumors: a pilot research. Clin. Most cancers Res. 23, 3638–3648 (2017).
Might, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).
Angeli, F. et al. Optimum use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).
Shitara, Ok. et al. Nab-paclitaxel versus solvent-based paclitaxel in sufferers with beforehand handled superior gastric most cancers (ABSOLUTE): an open-label, randomised, non-inferiority, section 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).
Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, section III non-inferiority research evaluating NK105 and paclitaxel in metastatic or recurrent breast most cancers sufferers. Br. J. Most cancers 120, 475–480 (2019).
Kosaka, Y. et al. Multicenter randomized open-label section II medical research evaluating outcomes of NK105 and paclitaxel in superior or recurrent breast most cancers. Int. J. Nanomed. 17, 4567 (2022).
Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in sufferers with superior strong tumors utilizing 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).
Atrafi, F. et al. A section I dose-finding and pharmacokinetics research of CPC634 (nanoparticle entrapped docetaxel) in sufferers with superior strong tumors. J. Clin. Oncol. 37, 3026–3026 (2019).
Atrafi, F. et al. Intratumoral comparability of nanoparticle entrapped docetaxel (CPC634) with typical docetaxel in sufferers with strong tumors. Clin. Most cancers Res. 26, 3537–3545 (2020).
Ingrid, B. et al. CINOVA: a section II research of CPC634 (nanoparticulate docetaxel) in sufferers with platinum resistant recurrent ovarian most cancers. Int. J. Gynecol. Most cancers 33, 1247 (2023).
Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory hole. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).
Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for medical utility: present and future views. Biomater. Sci. 8, 4653–4664 (2020).
Hemmrich, E. & McNeil, S. Lively ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).
Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we prepared? Am. J. Well being Syst. Pharm. 78, 1047–1056 (2021).
Fogel, D. B. Elements related to medical trials that fail and alternatives for bettering the chance of success: a assessment. Contemp. Clin. Trials Commun. 11, 156–164 (2018).
Heart for Drug Analysis and Analysis Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain
Van Norman, G. A. Medication, gadgets, and the FDA: Half 1: an summary of approval processes for medication. J. Am. Coll. Cardiol. 1, 170–179 (2016).
Klein, Ok. et al. A practical regulatory method for complicated generics by means of the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).
Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The beginning-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).
Park, A. et al. Fast response by means of the entrepreneurial capabilities of educational scientists. Nat. Nanotechnol. 17, 802–807 (2022).
Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing college spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).
Dayton, L. Coronavirus vaccine front-runner Moderna places MIT chemist-entrepreneur Robert Langer within the highlight. Nature Index https://www.nature.com/nature-index/information/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).
Langer, R. A private account of translating discoveries in an instructional lab. Nat. Biotechnol. 31, 487–489 (2013).
Prokesch, S. The Edison of medication. Harv. Bus. Rev. 95, 134–143 (2017).
Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to sufferers: a sensible information. Nanomedicine 11, 983–992 (2015).
Chaudhary, N., Weissman, D. & Whitehead, Ok. A. mRNA vaccines for infectious illnesses: ideas, supply and medical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
Gold, E. R. What the COVID-19 pandemic revealed about mental property. Nat. Biotechnol. 40, 1428–1430 (2022).
Faria, M. et al. Minimal data reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).
Kilkenny, C. et al. Bettering bioscience analysis reporting: the ARRIVE tips for reporting animal analysis. J. Pharmacol. Pharmacother. 1, 94–99 (2010).
Heart for Drug Analysis and Analysis & Heart for Biologics Analysis and Analysis Steering for Business: Setting Evaluation of Human Drug and Biologics Purposes (US Meals & Drug Administration, 1998); https://www.fda.gov/media/70809/obtain
Heart for Drug Analysis and Analysis Steering for Business: Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain
Chetwynd, A. J., Wheeler, Ok. E. & Lynch, I. Greatest observe in reporting corona research: Minimal details about Nanomaterial Biocorona Experiments (MINBE). Nano At this time 28, 100758 (2019).
Hadjidemetriou, M. et al. In vivo biomolecule corona round blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).
Ban, Z. et al. Machine studying predicts the purposeful composition of the protein corona and the mobile recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).
Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine improvement. Matter 6, 1071–1081 (2023).
Arden, N. S. et al. Business 4.0 for pharmaceutical manufacturing: making ready for the sensible factories of the long run. Int. J. Pharm. 602, 120554 (2021).
Younger, H. et al. Towards the scalable, speedy, reproducible, and cost-effective synthesis of customized nanomedicines on the level of care. Nano Lett. 24, 920–928 (2024).
de Vlieger, J. S. B. et al. Report of the AAPS steering discussion board on the FDA draft steering for business: ‘drug merchandise, together with organic merchandise, that include nanomaterials’. AAPS J. 21, 56 (2019).
Marchant, G. E., Sylvester, D. J., Abbott, Ok. W. & Danforth, T. L. Worldwide harmonization of regulation of nanomedicine. Stud. Ethics Legislation Technol. https://doi.org/10.2202/1941-6008.1120 (2010).