Developments in using two-dimensional nanomaterials for enhancing pores and skin wound therapeutic: a overview of present follow | Journal of Nanobiotechnology


  • Li R, Liu Ok, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive supplies promote Wound Therapeutic by way of Modulation of Cell behaviors. Adv Sci 2022, 9.

  • Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound therapeutic: theories, methods, and views. J Mater Chem B. 2021;9:3106–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Pores and skin Wound Therapeutic: an replace on the present data and ideas. Eur Surg Res. 2017;58:81–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Li L, Yu J, Zhang F, Shi J, Li M, Liu J, Li H, Gao J, Wu Y. Autophagy-modulated Biomaterial: a Sturdy Weapon for modulating the Wound Atmosphere to advertise pores and skin Wound Therapeutic. Int J Nanomed. 2023;18:2567–88.

    Article 
    CAS 

    Google Scholar
     

  • Krishnaswami V, Raju NS, Alagarsamy S, Kandasamy R. Novel nanocarriers for the therapy of Wound Therapeutic. Curr Pharm Design. 2020;26:4591–600.

    Article 
    CAS 

    Google Scholar
     

  • Singer AJ. Therapeutic mechanisms in cutaneous wounds: tipping the stability. Tissue Eng Half B: Evaluations. 2022;28:1151–67.

    Article 
    CAS 

    Google Scholar
     

  • Dalisson B, Barralet J. Bioinorganics and Wound Therapeutic. Adv Healthc Mater 2019, 8.

  • Kushwaha A, Goswami L, Kim BS. Nanomaterial-based remedy for Wound Therapeutic. Nanomaterials 2022, 12.

  • Vivcharenko V, Trzaskowska M, Przekora A. Wound dressing modifications for Accelerated Therapeutic of contaminated wounds. Int J Mol Sci 2023, 24.

  • Fernández-Guarino M, Hernández-Bule ML, Bacci S. Mobile and molecular processes in Wound Therapeutic. Biomedicines 2023, 11.

  • Park H, Kim J-U, Kim S, Hwang NS, Kim HD. Sprayable Ti3C2 MXene hydrogel for wound therapeutic and drug launch system. Mater Right now Bio 2023.

  • Dong R, Guo B. Sensible wound dressings for wound therapeutic. Nano Right now 2021, 41.

  • Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-based supplies for inhibition of wound an infection and accelerating Wound Therapeutic. Biomed Pharmacother 2023, 158.

  • Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating supplies in biomedical area. Sci Bull. 2019;64:1707–27.

    Article 
    CAS 

    Google Scholar
     

  • Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional supplies for distinction brokers, drug, and warmth supply functions by way of inexperienced applied sciences. J Drug Goal. 2023;31:369–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen EP, de Carvalho Castro Silva C, Merkoçi A. Latest development in biomedical functions on the floor of two-dimensional supplies: from biosensing to tissue engineering. Nanoscale. 2020;12:19043–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Li Y, Zhao L, Qi Z, Gou J, Zhang S, Zhang JZ. Latest advances in ultrathin two-dimensional supplies and biomedical functions for reactive oxygen species era and scavenging. Nanoscale. 2020;12:19516–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for Biomedical Purposes: rising developments and Future prospects. Adv Mater. 2015;27:7261–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeed S, Martins-Inexperienced M. Animal fashions for the research of acute cutaneous wound therapeutic. Wound Restore Regeneration. 2022;31:6–16.

    Article 
    PubMed 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Pores and skin wound therapeutic course of and New Rising applied sciences for pores and skin Wound Care and Regeneration. Pharmaceutics 2020, 12.

  • Yang X, Xiao X, Wang L, Ao Y, Track Y, Wang H, Wang H. Utility of antimicrobial medicine in perioperative surgical incision. Ann Clin Microbiol Antimicrob 2018, 17.

  • Goodwin J, Womack P, Moore B, Laureano Phillips J, Duane T. Incision classification accuracy: do residents know methods to classify them? Surg Infect. 2017;18:874–8.

    Article 

    Google Scholar
     

  • Yang Y, Zhao X, Yu J, Chen X, Wang R, Zhang M, Zhang Q, Zhang Y, Wang S, Cheng Y. Bioactive skin-mimicking hydrogel band-aids for diabetic wound therapeutic and infectious pores and skin incision therapy. Bioactive Mater. 2021;6:3962–75.

    Article 
    CAS 

    Google Scholar
     

  • Pathak PC, Gadgoli CH. Exploring the efficacy of panchavalkal extract and Zinc-Copper Bhasma in selling wound therapeutic in incision and excision wound fashions within the rat. J Ethnopharmacol 2024, 320.

  • Pores and skin graft utilizing MatriDerm® for plantar defects after excision of pores and skin most cancers. Most cancers Administration and Analysis 2019, Quantity 11:2947–2950.

  • He S, Shi D, Han Z, Dong Z, Xie Y, Zhang F, Zeng W, Yi Q. Heparinized silk fibroin hydrogels loading FGF1 promote the wound therapeutic in rats with full-thickness pores and skin excision. Biomed Eng On-line 2019, 18.

  • Panagiotou D, Filidou E, Gaitanidou M, Tarapatzi G, Spathakis M, Kandilogiannakis L, Stavrou G, Arvanitidis Ok, Tsetis JK, Gionga P et al. Position of Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 within the Wound Therapeutic Strategy of the Excisional Pores and skin. Vitamins 2023, 15.

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible technique for excisional skin-wound-healing research in mice. Nat Protoc 2023.

  • He Y, Luo Ok, Hu X, Liu J, Hao M, Li Y, Xia X, Lü X, Shi C. Antibacterial Mechanism of Shikonin in opposition to Vibrio vulnificus and its therapeutic potential on contaminated mice with full-thickness excised pores and skin. Foodborne Pathog Dis. 2023;20:67–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi Ok. The three-D configuration of excisional pores and skin wound therapeutic after topical probiotic software. Damage. 2022;53:1385–93.

    Article 
    PubMed 

    Google Scholar
     

  • Lintel H, Abbas DB, Lavin CV, Griffin M, Guo JL, Guardino N, Churukian A, Gurtner GC, Momeni A, Longaker MT, Wan DC. Transdermal deferoxamine administration improves excisional wound therapeutic in chronically irradiated murine pores and skin. J Translational Med 2022, 20.

  • Barbalho GN, Matos BN, Espirito Santo MEL, Silva VRC, Chaves SB, Gelfuso GM, Cunha-Filho M, Gratieri T. In vitro pores and skin mannequin for the analysis of burn therapeutic drug supply methods. J Drug Deliv Sci Technol 2021, 62.

  • Nunes PS, Rabelo AS, Souza JCCd, Santana BV, da Silva TMM, Serafini MR, dos Passos Menezes P, dos Santos Lima B, Cardoso JC, Alves JCS, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn therapeutic in a porcine mannequin. Int J Pharm. 2016;513:473–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simões TMS, de Alencar Fernandes Neto J, Nonaka CFW, de Vasconcelos Catão MHC. Results of photobiomodulation remedy with purple LED on inflammatory cells in the course of the therapeutic of pores and skin burns. Lasers Med Sci. 2022;37:2817–22.

    Article 
    PubMed 

    Google Scholar
     

  • Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based mostly, hydrogel-like microfibers as an antioxidant platform for pores and skin burn Therapeutic. ACS Appl Bio Mater. 2023;6:3103–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabello-Arista B, Melgarejo-Ramírez Y, Retana-Flores A, Martínez-López V, Márquez-Gutiérrez E, Almanza-Pérez J, Lecona H, Reyes-Frías ML, Ibarra C, Martínez-Pardo ME et al. Results of mesenchymal stem cell tradition on radio sterilized human amnion or radio sterilized pig pores and skin in burn wound therapeutic. Cell Tissue Banking 2022.

  • Huangfu Y, Li S, Deng L, Zhang J, Huang P, Feng Z, Kong D, Wang W, Dong A. Pores and skin-Adaptable, long-lasting moisture, and temperature-tolerant hydrogel dressings for accelerating burn Wound Therapeutic with out secondary harm. ACS Appl Mater Interfaces. 2021;13:59695–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan MA, Hussain Z, Ali S, Qamar Z, Imran M, Hafeez FY. Fabrication of Electrospun Probiotic functionalized nanocomposite scaffolds for an infection management and Dermal Burn Therapeutic in a mice Mannequin. ACS Biomaterials Sci Eng. 2019;5:6109–16.

    Article 
    CAS 

    Google Scholar
     

  • Nozari M, Gholizadeh M, Zahiri Oghani F, Tahvildari Ok. Research on novel chitosan/alginate and chitosan/bentonite versatile movies included with ZnO nano particles for accelerating dermal burn therapeutic: in vivo and in vitro analysis. Int J Biol Macromol. 2021;184:235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y-Ok, Cheng N-C, Cheng C-M. Biofilms in Power wounds: Pathogenesis and analysis. Traits Biotechnol. 2019;37:505–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuentes I, Yubero MJ, Morandé P, Varela C, Oróstica Ok, Acevedo F, Rebolledo-Jaramillo B, Arancibia E, Porte L, Palisson F. Longitudinal research of wound therapeutic standing and bacterial colonisation of Staphylococcus aureus and Corynebacterium diphtheriae in epidermolysis bullosa sufferers. Int Wound J. 2022;20:774–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi M, Qin Y, Wang L, Zhang J. The protecting position of resveratrol in diabetic wound therapeutic. Phytother Res. 2023;37:5193–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon D, Edmonds M. Managing Diabetic Foot Ulcers: Pharmacotherapy for Wound Therapeutic. Medicine. 2020;81:29–56.

    Article 

    Google Scholar
     

  • Ezhilarasu H, Vishalli D, Dheen ST, Bay B-H, Srinivasan DK. Nanoparticle-based Therapeutic Strategy for Diabetic Wound Therapeutic. Nanomaterials 2020, 10.

  • Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and therapy of impaired Wound Therapeutic in Diabetes Mellitus: New insights. Adv Remedy. 2014;31:817–36.

    Article 
    CAS 

    Google Scholar
     

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible technique for excisional skin-wound-healing research in mice. Nat Protoc. 2023;19:184–206.

    Article 
    PubMed 

    Google Scholar
     

  • Bhattarai-Kline S, Lear SK, Shipman SL. One-step knowledge storage in mobile DNA. Nat Chem Biol. 2021;17:232–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eming SA, Murray PJ, Pearce EJ. Metabolic orchestration of the wound therapeutic response. Cell Metabol. 2021;33:1726–43.

    Article 
    CAS 

    Google Scholar
     

  • Oliveira A, Simões S, Ascenso A, Reis CP. Therapeutic advances in wound therapeutic. J Dermatological Deal with. 2020;33:2–22.

    Article 

    Google Scholar
     

  • Maleki A, He J, Bochani S, Nosrati V, Shahbazi M-A, Guo B. Multifunctional photoactive hydrogels for Wound Therapeutic Acceleration. ACS Nano. 2021;15:18895–930.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Chen H, Fang Y, Wu J. Hydrogel Mixed with Phototherapy in Wound Therapeutic. Adv Healthc Mater 2022, 11.

  • Zhang H, Liu S, Yang X, Chen N, Pang F, Chen Z, Wang T, Zhou J, Ren F, Xu X, Li T. LED phototherapy with gelatin sponge promotes Wound Therapeutic in mice. Photochem Photobiol. 2017;94:179–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M-C, Guo J-X, Chen L-J, Zhao X. Acrylate-functionalized porphyrin-covalent natural framework for bacterial-targeted and reaction-enhanced synergistic phototherapy/chemotherapy towards sterilization and wound therapeutic. Biomaterials Sci. 2023;11:1776–84.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Qiu L, Wang C, Gao Z, Zhou S, Cui P, Jiang P, Hu H, Ni X, Du X, et al. Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound therapeutic. Biomaterials Sci. 2022;10:654–64.

    Article 
    CAS 

    Google Scholar
     

  • Razack SA, Lee Y, Shin H, Duraiarasan S, Chun B-S, Kang HW. Cellulose nanofibrils strengthened chitosan-gelatin based mostly hydrogel loaded with nanoemulsion of oregano important oil for diabetic wound therapeutic assisted by low degree laser remedy. Int J Biol Macromol. 2023;226:220–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhu G, Xu W, Wang M, Xie Y, Bao Z, Qi M, Gao M, Li C. Development of mPt/ICG-αA nanoparticles with enhanced phototherapeutic actions for multidrug-resistant bacterial eradication and wound therapeutic. Nanoscale. 2023;15:13617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound therapeutic: a overview of purple and near-infrared wavelength functions. Cell Biochem Funct. 2021;39:596–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar B, Ye Z, Zhang M, Track Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Gentle-activated biodegradable Covalent Natural Framework-Built-in Heterojunction for Photodynamic, Photothermal, and gaseous remedy of continual wound an infection. ACS Appl Mater Interfaces. 2021;13:42396–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayat M, Albright R, Hamblin MR, Chien S. Impression of Blue Gentle Remedy on Wound Therapeutic in Preclinical and scientific topics: a scientific overview. J Lasers Med Sci 2022, 13.

  • Tian Q, Yang Y, Li A, Chen Y, Li Y, Solar L, Shang L, Gao L, Zhang L. Ferrihydrite nanoparticles because the photosensitizer increase microbial contaminated wound therapeutic with blue gentle. Nanoscale. 2021;13:19123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdes M, Mace Ok, Margetts L, Cartmell S. Standing and challenges {of electrical} stimulation use in continual wound therapeutic. Curr Opin Biotechnol 2022, 75.

  • Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound therapeutic. Burns Trauma 2018, 6.

  • Ferreira CL, Neves Jardini MA, Moretto Nunes CM, Bernardo DV, Viana Casarin RC, dos Santos Gedraite E, Mathias MA, Liu F, Mendonça G. Silveira Mendonça DB, Santamaria MP: electrical stimulation enhances early palatal wound therapeutic in mice. Arch Oral Biol 2021, 122.

  • Rabbani M, Rahman E, Powner MB, Triantis IF. Making sense of Electrical Stimulation: a Meta-analysis for Wound Therapeutic. Ann Biomed Eng 2023.

  • Khouri C, Kotzki S, Roustit M, Blaise S, Gueyffier F, Cracowski J-L. Hierarchical analysis {of electrical} stimulation protocols for continual wound therapeutic: an impact dimension meta-analysis. Wound Restore Regeneration. 2017;25:883–91.

    Article 
    PubMed 

    Google Scholar
     

  • Liao W, Yang D, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Collagen-based nanocomposite dressings for selling contaminated Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Solar L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound therapeutic. J Tissue Viability. 2022;31:180–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Y, Li Y, Huang S, Yu F, Bei Y, Zhang Y, Tang J, Huang Y, Xiang Q. Hybrid freeze-dried dressings composed of epidermal development issue and recombinant Human-Like Collagen Improve Cutaneous Wound Therapeutic in rats. Entrance Bioeng Biotechnol 2020, 8.

  • Kou Z, Li B, Aierken A, Tan N, Li C, Han M, Jing Y, Li N, Zhang S, Peng S et al. Mesenchymal stem cells pretreated with collagen promote pores and skin Wound-Therapeutic. Int J Mol Sci 2023, 24.

  • Shen X-R, Chen X-L, Xie H-X, He Y, Chen W, Luo Q, Yuan W-H, Tang X, Hou D-Y, Jiang D-W, Wang Q-R. Useful results of a novel shark-skin collagen dressing for the promotion of seawater immersion wound therapeutic. Navy Med Res 2017, 4.

  • Pang C, Fan KS, Wei L, Kolar MK. Gene remedy in wound therapeutic utilizing nanotechnology. Wound Restore Regeneration. 2020;29:225–39.

    Article 
    PubMed 

    Google Scholar
     

  • Catanzano O, Quaglia F, Boateng JS. Wound dressings as development issue supply platforms for continual wound therapeutic. Professional Opin Drug Deliv. 2021;18:737–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legrand JMD, Martino MM. Progress issue and cytokine Supply methods for Wound Therapeutic. Chilly Spring Harb Perspect Biol 2022, 14.

  • Rabbani PS, Zhou A, Borab ZM, Frezzo JA, Srivastava N, Extra HT, Rifkin WJ, David JA, Berens SJ, Chen R, et al. Novel lipoproteoplex delivers Keap1 siRNA based mostly gene remedy to speed up diabetic wound therapeutic. Biomaterials. 2017;132:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailore NN, Sarojini BK, Harshitha KR. Fabrication and dedication of the Solar Safety Issue and Ultraviolet Safety Issue for Piscean Collagen/Bischalcone By-product (B1) Composite movies with wide-range UV shielding. ACS Omega. 2022;7:27876–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhoke NR, Kaushik Ok, Das A. Cxcr6-Based mostly mesenchymal stem cell gene remedy potentiates pores and skin regeneration in Murine Diabetic wounds. Mol Ther. 2020;28:1314–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Min D, Guo G, Liao X, Fu Z. Experimental research of epidermal development issue and acidic fibroblast development issue within the therapy of diabetic foot wounds. Experimental Therapeutic Med 2018.

  • Willy C, Agarwal A, Andersen CA, Santis GD, Gabriel A, Grauhan O, Guerra OM, Lipsky BA, Malas MB, Mathiesen LL, et al. Closed incision unfavorable stress remedy: worldwide multidisciplinary consensus suggestions. Int Wound J. 2016;14:385–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kantak NA, Mistry R, Varon DE, Halvorson EG. Destructive stress wound remedy for Burns. Clin Plast Surg. 2017;44:671–7.

    Article 
    PubMed 

    Google Scholar
     

  • Nuhiji E. Traits and Innovation in Destructive Strain Wound Remedy: A Evaluate of Burn Wound Administration. Advances in Wound Care 2023.

  • Zwanenburg PR, Tol BT, de Vries FEE, Boermeester MA. Incisional unfavorable stress Wound Remedy for Surgical Website an infection Prophylaxis within the post-antibiotic period. Surg Infect. 2018;19:821–30.

    Article 

    Google Scholar
     

  • Qiu X, Luo H, Huang G. Roles of unfavorable stress wound remedy for scar revision. Entrance Physiol 2023, 14.

  • Qiu X, Wu Y, Zhang D, Zhang H, Yu A, Li Z. Roles of Oxidative Stress and Raftlin in Wound Therapeutic Beneath Destructive-Strain Wound Remedy. Medical, Beauty and Investigational Dermatology 2021, Quantity 14:1745–1753.

  • Wu M, Liu Q, Yu Z, Karvar M, Aoki S, Hamaguchi R, Ma C, Orgill DP, Panayi AC. Destructive-pressure wound remedy induces Lymphangiogenesis in Murine Diabetic Wound Therapeutic. Plast Reconstr Surg. 2022;151:779–90.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Ok, Deng S, Zhu Y, Yang W, Chen W, Huang L, Zhang C, Li M, Ao L, Jiang Y et al. Platelet Wealthy plasma loaded multifunctional hydrogel accelerates Diabetic Wound Therapeutic through regulating the repeatedly irregular microenvironments. Adv Healthc Mater 2023, 12.

  • Zhou S, Li L, Chen C, Chen Y, Zhou L, Zhou FH, Dong J, Wang L. Injectable gelatin microspheres loaded with platelet wealthy plasma enhance wound therapeutic by regulating early irritation. Int J Med Sci. 2021;18:1910–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy DW, Johnson NR, Jeffries EM, Hara H, Wang Y. Managed supply of platelet-derived proteins enhances porcine wound therapeutic. J Managed Launch. 2017;253:73–81.

    Article 
    CAS 

    Google Scholar
     

  • Giuliani C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells. Antioxidants 2019, 8.

  • Liao X, Liang J-X, Li S-H, Huang S, Yan J-X, Xiao L-L, Track J-X, Liu H-W. Allogeneic platelet-rich plasma remedy as an efficient and protected adjuvant methodology for continual wounds. J Surg Res. 2020;246:284–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Rising 2D nanomaterials for biomedical functions. Mater Right now. 2021;50:276–302.

    Article 
    CAS 

    Google Scholar
     

  • Hu H, Zavabeti A, Quan H, Zhu W, Wei H, Chen D, Ou JZ. Latest advances in two-dimensional transition metallic dichalcogenides for organic sensing. Biosens Bioelectron 2019, 142.

  • Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional nanomaterials past Graphene for Biomedical Purposes. J Funct Biomaterials 2022, 13.

  • Solar W, Wu FG. Two-Dimensional supplies for antimicrobial functions: Graphene supplies and Past. Chem – Asian J. 2018;13:3378–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari MO, Gauthaman Ok, Essa A, Bencherif SA, Memic A. Graphene and Graphene-based supplies in Biomedical Purposes. Curr Med Chem. 2019;26:6834–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and diminished graphene oxide-based scaffolds in regenerative drugs. Int J Pharm 2020, 580.

  • Raja IS, Jang HJ, Kang MS, Kim KS, Choi YS, Jeon J-R, Lee JH, Han D-W. Position of Graphene Household Nanomaterials in Pores and skin Wound Therapeutic and Regeneration. In Multifaceted Biomedical Purposes of Graphene. 2022: 89–105: Advances in Experimental Medication and Biology].

  • Jaleel JA, Sruthi S, Pramod Ok. Reinforcing nanomedicine utilizing graphene household nanomaterials. J Managed Launch. 2017;255:218–30.

    Article 
    CAS 

    Google Scholar
     

  • Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical functions of graphene and graphene-related supplies. Int J Nanomed 2016.

  • Tu YS, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu ZR, Huang Q, Fan CH, Fang HP, Zhou RH. Damaging extraction of phospholipids from Escherichia coli membranes by graphene nanosheetsvol 8, pg 594, (2013). Nature Nanotechnology 2013, 8.

  • da Luz F, Garcia Filho F, del-Río M, Nascimento L, Pinheiro W, Monteiro S. Graphene-Included Pure Fiber Polymer composites: a primary overview. Polymers 2020, 12.

  • Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Harm RH. Antioxidant chemistry of graphene-based supplies and its position in oxidation safety know-how. Nanoscale. 2014;6:11744–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-based nanomaterials for DNA detection: a overview. Molecules 2018, 23.

  • Losada-Garcia N, Berenguer-Murcia A, Cazorla-Amorós D, Palomo J. Environment friendly manufacturing of Multi-layer Graphene from Graphite Flakes in Water by lipase-graphene sheets conjugation. Nanomaterials 2019, 9.

  • Ali IH, Ouf A, Elshishiny F, Taskin MB, Track J, Dong M, Chen M, Siam R, Mamdouh W. Antimicrobial and Wound-Therapeutic actions of Graphene-Strengthened Electrospun Chitosan/Gelatin nanofibrous nanocomposite scaffolds. ACS Omega. 2022;7:1838–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du S, Liu B, Li Z, Tan H, Qi W, Liu T, Qiang S, Zhang T, Track F, Chen X, et al. A Nanoporous Graphene/Nitrocellulose Membrane Useful to Wound Therapeutic. ACS Appl Bio Mater. 2021;4:4522–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary P, Ramalingam B, Das SK. Fabrication of Chitosan-Strengthened Multifunctional Graphene Nanocomposite as Antibacterial scaffolds for Hemorrhage Management and Wound-Therapeutic software. ACS Biomaterials Sci Eng. 2020;6:5911–29.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Peng Y, Xue H, Liu G, Wang N, Shao Z. MiR-21 regulating PVT1/PTEN/IL-17 axis in direction of the therapy of infectious diabetic wound therapeutic by modified GO-derived biomaterial in mouse fashions. J Nanobiotechnol 2022, 20.

  • D’Amora U, Dacrory S, Hasanin MS, Longo A, Soriente A, Kamel S, Raucci MG, Ambrosio L, Scialla S. Advances within the Physico-Chemical, Antimicrobial and Angiogenic properties of Graphene-Oxide/Cellulose nanocomposites for Wound Therapeutic. Pharmaceutics 2023, 15.

  • Nandhakumar M, Thangaian DT, Sundaram S, Roy A, Subramanian B. An everlasting in vitro wound therapeutic section recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022, 12.

  • Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Organic and structural properties of graphene oxide/curcumin nanocomposite included Chitosan as a scaffold for wound therapeutic software. Life Sci 2021, 264.

  • Wang Y, Liu S, Yu W. Functionalized Graphene Oxide-Strengthened Chitosan Hydrogel as Biomimetic Dressing for Wound Therapeutic. Macromol Biosci 2021, 21.

  • Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, Fauzi MB. Twin-Layered Strategy of Ovine Collagen-Gelatin/Cellulose Hybrid Biomatrix Containing Graphene Oxide-Silver Nanoparticles for Cutaneous Wound Therapeutic: Fabrication, Physicochemical, Cytotoxicity and Antibacterial Characterisation. Biomedicines 2022, 10.

  • Sadeghianmaryan A, Sardroud HA, Allafasghari S, Yazdanpanah Z, Naghieh S, Gorji M, Chen X. Electrospinning of polyurethane/graphene oxide for pores and skin wound dressing and its in vitro characterization. J Biomater Appl. 2020;35:135–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas Ok, Janani G, Udayakumar S, Deepika B, Girigoswami Ok. Tough edges of diminished graphene oxide (rGO) sheets elicit anticancerous actions: an in vitro research. Outcomes Chem 2023, 6.

  • Suneetha M, Zo S, Choi SM, Han SS. Antibacterial, biocompatible, hemostatic, and tissue adhesive hydrogels based mostly on fungal-derived carboxymethyl chitosan-reduced graphene oxide-polydopamine for wound therapeutic functions. Int J Biol Macromol 2023, 241.

  • Dou Y, Zhang Y, Zhang S, Ma S, Zhang H. Multi-functional conductive hydrogels based mostly on heparin–polydopamine advanced diminished graphene oxide for epidermal sensing and continual wound therapeutic. J Nanobiotechnol 2023, 21.

  • Tanwar S, Arya A, Gaur A, Sharma AL. Transition metallic dichalcogenide (TMDs) electrodes for supercapacitors: a complete overview. J Phys: Condens Matter 2021, 33.

  • Luo M, Fan T, Zhou Y, Zhang H, Mei L. 2D black phosphorus–based mostly Biomedical Purposes. Adv Funct Mater 2019, 29.

  • Zhang W, Kuang Z, Track P, Li W, Gui L, Tang C, Tao Y, Ge F, Zhu L. Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Therapeutic Remedy. Nanomaterials 2022, 12.

  • Harini Ok, Girigoswami Ok, Pallavi P, Gowtham P, Thirumalai A, Charulekha Ok, Girigoswami A. MoS2 nanocomposites for biomolecular sensing, illness monitoring, and therapeutic functions. Nano Futures 2023, 7.

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Development of multifunctional hydrogel based mostly on the tannic acid-metal coating adorned MoS2 twin nanozyme for bacteria-infected wound therapeutic. Bioactive Mater. 2022;9:461–74.

    Article 
    CAS 

    Google Scholar
     

  • Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C et al. Functionalized MoS2 Nanovehicle with Close to-Infrared Laser‐Mediated Nitric Oxide Launch and Photothermal Actions for Superior Micro organism‐Contaminated Wound Remedy. Small 2018, 14.

  • Yuwen L, Solar Y, Tan G, Xiu W, Zhang Y, Weng L, Teng Z, Wang L. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial exercise for efficient therapy of Staphylococcus aureus biofilms and wound an infection. Nanoscale. 2018;10:16711–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Liu X, Liu Z, Xu Y. Seen-light‐pushed photocatalysis‐enhanced nanozyme of TiO2 Nanotubes@MoS2 nanoflowers for environment friendly Wound Therapeutic contaminated with Multidrug‐resistant Micro organism. Small 2021, 17.

  • Jin W, Track P, Wu Y, Tao Y, Yang Ok, Gui L, Zhang W, Ge F. Biofilm microenvironment-mediated MoS2 nanoplatform with its Photothermal/Photodynamic synergistic antibacterial molecular mechanism and Wound Therapeutic Research. ACS Biomaterials Sci Eng. 2022;8:4274–88.

    Article 
    CAS 

    Google Scholar
     

  • Huang X-W, Wei J-J, Liu T, Zhang X-L, Bai S-M, Yang H-H. Silk fibroin-assisted exfoliation and functionalization of transition metallic dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale. 2017;9:17193–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, Liu X, Zhang X, Shi J, Cong W, et al. WS2 nanosheet as a brand new photosensitizer provider for mixed photodynamic and photothermal remedy of most cancers cells. Nanoscale. 2014;6:10394–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Yang M, Solar X, Yang N, Deng T, Li Y, Shen H. WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo mixture remedy. J Mater Chem B. 2020;8:2331–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang N, Zhu M, Xu G, Liu N, Yu C. A near-infrared light-responsive multifunctional nanocomposite hydrogel for environment friendly and synergistic antibacterial wound remedy and therapeutic promotion. J Mater Chem B. 2020;8:3908–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhang J, Yu H. Elemental selenium at nano dimension possesses decrease toxicity with out compromising the elemental impact on selenoenzymes: comparability with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh A, Tehmasebi-Foolad A, Rajabzadeh A, Beigi-Brojeni N, Zarei L. Results of Chitosan/Nano Selenium Biofilm on Contaminated Wound Therapeutic in rats; an experimental research. Bull Emerg Trauma. 2019;7:284–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Seen light-responsive selenium nanoparticles mixed with Sonodynamic Remedy to Promote Wound Therapeutic. ACS Biomaterials Sci Eng. 2023;9:1341–51.

    Article 
    CAS 

    Google Scholar
     

  • Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi H-R, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing functions. J Biomater Appl. 2021;36:193–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with particular reference to anti-biofilm, anti-oxidant, wound therapeutic, cytotoxic and anti-viral actions. J Hint Elem Med Biol. 2015;32:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G. In situ synthesized Selenium nanoparticles-decorated bacterial Cellulose/Gelatin hydrogel with enhanced Antibacterial, antioxidant, and anti‐inflammatory capabilities for facilitating pores and skin Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Altememy D, Javdani M, Khosravian P, Khosravi A, Moghtadaei Khorasgani E. Preparation of Transdermal Patch containing selenium nanoparticles loaded with doxycycline and analysis of pores and skin Wound Therapeutic in a rat mannequin. Prescription drugs 2022, 15.

  • Golmohammadi R, Najar-Peerayeh S, Tohidi Moghadam T, Hosseini SMJ. Synergistic antibacterial exercise and Wound Therapeutic properties of Selenium-Chitosan-Mupirocin Nanohybrid System: an in vivo research on Rat Diabetic Staphylococcus aureus Wound an infection mannequin. Sci Rep 2020, 10.

  • Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring porous Silicon for Biomedical Purposes: from drug supply to Most cancers Immunotherapy. Adv Mater 2018, 30.

  • Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA. Fabrication of a multifunctional Nano‐in‐micro drug supply platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Adv Mater. 2014;26:4497–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarvis KL, Barnes TJ, Prestidge CA. Floor chemical modification to manage molecular interactions with porous silicon. J Colloid Interface Sci. 2011;363:327–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Track X, Yu Y, Chen Y. Two-Dimensional Silicene/Silicon nanosheets: an rising Silicon‐composed nanostructure in Biomedicine. Adv Mater 2021, 33.

  • Duan W, Liu X, Zhao J, Zheng Y, Wu J. Porous Silicon Provider endowed with Photothermal and Therapeutic results for Synergistic Wound Disinfection. ACS Appl Mater Interfaces. 2022;14:48368–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Yang Y, Duan W, Qu X, Wu J. Synergistic and On-Demand launch of Ag-AMPs loaded on porous Silicon Nanocarriers for Antibacteria and Wound Therapeutic. ACS Appl Mater Interfaces. 2021;13:16127–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, Han Ok, Zheng C, Bai Q, Wu W, Zhu C, Zhang Y, Cui N, Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound therapeutic. J Colloid Interface Sci. 2022;607:1239–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Track X, Xiong Q et al. A Novel Prime-Down synthesis of ultrathin 2D Boron Nanosheets for Multimodal Imaging‐guided Most cancers Remedy. Adv Mater 2018, 30.

  • Xu J-W, Yao Ok, Xu Z-Ok. Nanomaterials with a photothermal impact for antibacterial actions: an outline. Nanoscale. 2019;11:8680–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Z, Meng X, Li X, Liang W, Huang W, Chen Ok, Chen J, Xing C, Qiu M, Zhang B et al. Two-Dimensional Borophene: Properties, Fabrication, and Promising Purposes. Analysis 2020, 2020.

  • Lv J, Qi Y, Tian Y, Wang G, Shi L, Ning G, Ye J. Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide launch actions for environment friendly antibacterial therapy and wound therapeutic promotion. Biomaterials Sci. 2022;10:3747–56.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for environment friendly Singlet Oxygen Technology. J Am Chem Soc. 2015;137:11376–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tayari V, Hemsworth N, Fakih I, Favron A, Gaufrès E, Gervais G, Martel R, Szkopek T. Two-dimensional magnetotransport in a black phosphorus bare quantum effectively. Nat Commun 2015, 6.

  • Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a sturdy supply platform for Most cancers Theranostics. Adv Mater 2016, 29.

  • Huang Ok, Wu J, Gu Z. Black Phosphorus Hydrogel scaffolds improve bone regeneration through a sustained provide of calcium-free phosphorus. ACS Appl Mater Interfaces. 2018;11:2908–16.

    Article 

    Google Scholar
     

  • Wang S, Weng J, Fu X, Lin J, Fan W, Lu N, Qu J, Chen S, Wang T, Huang P. Black phosphorus nanosheets for delicate hyperthermia-enhanced chemotherapy and chemo-photothermal mixture remedy. Nanotheranostics. 2017;1:208–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu YN, Guo S. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative dysfunction remedy. Adv Mater 2017, 30.

  • Zhang X, Chen G, Liu Y, Solar L, Solar L, Zhao Y. Black phosphorus-loaded Separable Microneedles as Responsive Oxygen Supply Carriers for Wound Therapeutic. ACS Nano. 2020;14:5901–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer therapy. Proceedings of the Nationwide Academy of Sciences 2020, 117:28667–28677.

  • Liu B, Su Y, Wu S, Shen J. Native photothermal/photodynamic synergistic antibacterial remedy based mostly on two-dimensional BP@CQDs triggered by single NIR gentle supply. Photodiagn Photodyn Ther 2022, 39.

  • Zhou J, Li T, Zhang M, Han B, Xia T, Ni S, Liu Z, Chen Z, Tian X. Thermosensitive black phosphorus hydrogel loaded with silver sulfadiazine promotes pores and skin wound therapeutic. J Nanobiotechnol 2023, 21.

  • Bai X, Wang R, Hu X, Dai Q, Guo J, Cao T, Du W, Cheng Y, Xia S, Wang D, et al. Two-Dimensional Biodegradable Black Phosphorus nanosheets promote giant full-thickness Wound Therapeutic by way of in situ regeneration remedy. ACS Nano. 2024;18:3553–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Q, Solar T, Su W, Jing X, Ye B, Su Y, Zeng L, Qu Y, Yang X, Wu Y et al. Bioinspired Multifunctional Black Phosphorus Hydrogel with antibacterial and antioxidant properties: a Stepwise Countermeasure for Diabetic pores and skin Wound Therapeutic. Adv Healthc Mater 2022, 11.

  • Zhao Y, Tian C, Liu Y, Liu Z, Li J, Wang Z, Han X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound therapeutic. Biomaterials 2023, 295.

  • Xue C, Sutrisno L, Li M, Zhu W, Fei Y, Liu C, Wang X, Cai Ok, Hu Y, Luo Z. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound therapeutic. Biomaterials 2021, 269.

  • Huang X-W, Wei J-J, Zhang M-Y, Zhang X-L, Yin X-F, Lu C-H, Track J-B, Bai S-M, Yang H-H. Water-based black Phosphorus Hybrid nanosheets as a moldable platform for Wound Therapeutic Purposes. ACS Appl Mater Interfaces. 2018;10:35495–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharker SM. Hexagonal Boron Nitrides (White Graphene): a promising methodology for Most cancers Drug Supply. Int J Nanomed. 2019;14:9983–93.

    Article 

    Google Scholar
     

  • Şen Ö, Emanet M, Çulha M. Stimulatory impact of Hexagonal Boron nitrides in Wound Therapeutic. ACS Appl Bio Mater. 2019;2:5582–96.

    Article 
    PubMed 

    Google Scholar
     

  • Tarhan T, Şen Ö, Ciofani ME, Yılmaz D, Çulha M. Synthesis and characterization of silver nanoparticles adorned polydopamine coated hexagonal boron nitride and its impact on wound therapeutic. J Hint Elem Med Biol 2021, 67.

  • Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and excessive volumetric capacitance of two-dimensional Titanium Carbide. Science. 2013;341:1502–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Verma R, Viswanathan Ok, Subbarayan R, Ghotekar S. Multifunctional biomedical functions of MXene-based hydrogels: a overview. Inorg Chem Commun 2024, 164.

  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Wen S, Cai S, Zhang W, Wu T, Xiong Y. MXene-based nanomaterials with enzyme-like properties for biomedical functions. Nanoscale Horizons. 2023;8:1333–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: rising alternatives within the biomedical area. Biomaterials Sci. 2021;9:5437–71.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Synthetic Nonenzymatic antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a light photothermal-controlled oxygen launch platform for Diabetic Wound Therapeutic. ACS Nano. 2022;16:7486–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Wei W, Zhang M, Guo X, Zhang B, Wang D, Jiang X, Liu F, Tang J. Cryptotanshinone-Doped Photothermal Synergistic MXene@PDA nanosheets with Antibacterial and Anti‐Inflammatory properties for Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Li H, Dai J, Yi X, Cheng F. Technology of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for selling wound therapeutic. Biomaterials Adv 2022, 140.

  • Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J. A multimodal antimicrobial platform based mostly on MXene for therapy of wound an infection. Colloids Surf B 2021, 207.

  • Li Y, Han M, Cai Y, Jiang B, Zhang Y, Yuan B, Zhou F, Cao C. Muscle-inspired MXene/PVA hydrogel with excessive toughness and photothermal remedy for selling bacteria-infected wound therapeutic. Biomaterials Sci. 2022;10:1068–82.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Li D, Wang Y, Zhou G, Ge Ok, Jiang L, Fang D. Versatile, high-strength and multifunctional polyvinyl alcohol/MXene/polyaniline hydrogel enhancing pores and skin wound therapeutic. Biomaterials Sci. 2022;10:3585–96.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Purposes of MXene and its modified supplies in pores and skin wound restore. Entrance Bioeng Biotechnol 2023, 11.

  • Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive antibacterial hemostatic multifunctional scaffolds based mostly on Ti3C2Tx MXene nanosheets for selling Multidrug-resistant Micro organism-infected Wound Therapeutic. ACS Nano. 2021;15:2468–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Zeng Q, Hu Y, He J, Wang H, Deng C, Li D. MXene/zinc ion embedded agar/sodium alginate hydrogel for speedy and environment friendly sterilization with photothermal and chemical synergetic remedy. Talanta 2024, 266.

  • Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W et al. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) composite hydrogel as Wound Dressing for accelerating pores and skin Wound Therapeutic beneath Electrical Stimulation. Adv Healthc Mater 2020, 9.

  • Zhu H, Dai W, Wang L, Yao C, Wang C, Gu B, Li D, He J. Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Therapeutic Property. Polymers 2022, 14.

  • You D, Li Ok, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites mixed with electrical stimulation in wound therapeutic: preparation and characterization. Int J Nanomed. 2019;14:7039–52.

    Article 
    CAS 

    Google Scholar
     

  • Hao P-C, Burnouf T, Chiang C-W, Jheng P-R, Szunerits S, Yang J-C, Chuang E-Y. Enhanced diabetic wound therapeutic utilizing platelet-derived extracellular vesicles and diminished graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnol 2023, 21.

  • Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with diminished graphene oxide for in vitro and in vivo wound therapeutic functions. Int J Pharm 2021, 607.

  • Heo JS. Selenium-stimulated exosomes improve Wound Therapeutic by modulating irritation and angiogenesis. Int J Mol Sci 2022, 23.

  • Yang J, Yang YW. Metallic–Natural frameworks for Biomedical Purposes. Small 2020, 16.

  • Yang M, Zhang J, Shi W, Zhang J, Tao C. Latest advances in metallic–natural frameworks and their composites for the phototherapy of pores and skin wounds. J Mater Chem B. 2022;10:4695–713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu L-Q, Chen X-Y, Cai M-H, Tao X-H, Fan Y-B, Mou X-Z. Floor Engineered Metallic-Natural frameworks (MOFs) based mostly Novel Hybrid methods for Efficient Wound Therapeutic: a overview of latest developments. Entrance Bioeng Biotechnol 2020, 8.

  • Xing F, Ma H, Yu P, Zhou Y, Luo R, Xiang Z, Maria Rommens P, Duan X, Ritz U. Multifunctional metallic–natural frameworks for wound therapeutic and pores and skin regeneration. Mater Design 2023, 233.

  • Cun J-E, Fan X, Pan Q, Gao W, Luo Ok, He B, Pu Y. Copper-based metallic–natural frameworks for biomedical functions. Adv Colloid Interface Sci 2022, 305.

  • Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metallic–natural frameworks: a overview. Chem Commun. 2022;58:11488–506.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, Chen F, Wang C. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial exercise for wound dressing software. Int J Biol Macromol. 2020;158:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ximing G, Bin G, Yuanlin W, Shuanghong G. Preparation of spherical metallic–natural frameworks encapsulating ag nanoparticles and research on its antibacterial exercise. Mater Sci Engineering: C. 2017;80:698–707.

    Article 

    Google Scholar
     

  • Zhang N, Zhang X, Zhu Y, Wang D, Liu W, Chen D, Li R, Li S. MOF/MXene-loaded PVA/chitosan hydrogel with antimicrobial impact and wound therapeutic promotion beneath electrical stimulation and improved mechanical properties. Int J Biol Macromol 2024, 264.

  • Wang T-L, Zhou Z-F, Liu J-F, Hou X-D, Zhou Z, Dai Y-L, Hou Z-Y, Chen F, Zheng L-P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and pores and skin wound therapeutic. J Nanobiotechnol 2021, 19.

  • Chen Y, Cai J, Liu D, Liu S, Lei D, Zheng L, Wei Q, Gao M. Zinc-based metallic natural framework with antibacterial and anti inflammatory properties for selling wound therapeutic. Regenerative Biomaterials 2022, 9.

  • Wang C, Luo Y, Liu X, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Lei J, Feng X, Wu S. The improved photocatalytic sterilization of MOF-Based mostly nanohybrid for speedy and moveable remedy of bacteria-infected open wounds. Bioactive Mater. 2022;13:200–11.

    Article 

    Google Scholar
     

  • Li J, Yan Y, Chen Y, Fang Q, Hussain MI, Wang L-N. Versatile curcumin-loaded Zn-MOF hydrogel for long-term drug launch and antibacterial actions. Int J Mol Sci 2023, 24.

  • Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for selling Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, et al. Multifunctional Magnesium Natural Framework-based Microneedle Patch for accelerating Diabetic Wound Therapeutic. ACS Nano. 2021;15:17842–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Liu Ok, Jiang T, Ren S, Kang Y, Li W, Yao H, Yang X, Dai H, Chen Z. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound therapeutic. Mater Sci Engineering: C 2021, 131.

  • Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of Ultrasmall Gold Nanoparticles/2D MOFs hybrid as Nanozyme for Antibacterial Remedy. Small 2020, 16.

  • Chen M, Lengthy Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X. Titanium Incorporation into Zr-Porphyrinic Metallic–Natural frameworks with enhanced antibacterial exercise in opposition to Multidrug‐resistant pathogens. Small 2020, 16.

  • Zeng Y, Wang C, Lei Ok, Xiao C, Jiang X, Zhang W, Wu L, Huang J, Li W. Multifunctional MOF-Based mostly Microneedle Patch with Synergistic Chemo‐Photodynamic Antibacterial Impact and sustained launch of development issue for Power Wound Therapeutic. Adv Healthc Mater 2023, 12.

  • Yao S, Wang Y, Chi J, Yu Y, Zhao Y, Luo Y, Wang Y. Porous MOF microneedle array Patch with Photothermal responsive nitric oxide supply for Wound Therapeutic. Adv Sci 2021, 9.

  • Yang G, Fan R, Yang J, Yi L, Chen S, Wan W. Magnesium/gallic acid bioMOFs laden carbonized mushroom aerogel successfully heals biofilm-infected pores and skin wounds. Biomaterials 2023, 302.

  • Gao P, Wang M, Chen Y, Pan W, Zhou P, Wan X, Li N, Tang B. A COF-based nanoplatform for extremely environment friendly most cancers analysis, photodynamic remedy and prognosis. Chem Sci. 2020;11:6882–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS. Latest advances in covalent natural frameworks (COFs) for wound therapeutic and antimicrobial functions. RSC Adv. 2023;13:8136–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Chen C, Zhao J, Tan M, Zhai S, Wei Y, Wang L, Dai T. Electrospun Fibrous Membrane Containing a Cyclodextrin Covalent Natural Framework with Antibacterial properties for accelerating Wound Therapeutic. ACS Biomaterials Sci Eng. 2021;7:3898–907.

    Article 
    CAS 

    Google Scholar
     

  • Ding LG, Wang S, Yao BJ, Li F, Li YA, Zhao GY, Dong YB. Synergistic Antibacterial and Anti-inflammatory results of a drug‐loaded Self‐Standing Porphyrin‐COF membrane for environment friendly pores and skin Wound Therapeutic. Adv Healthc Mater 2021, 10.

  • Wang X, Solar B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-responsive COF-Based mostly thiol-targeting Nanoinhibitor for curing bacterial infections. ACS Appl Mater Interfaces. 2022;14:38483–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Wang P, Zhang A, Qin Z, Li Y, Xianyu Y, Zhang H. Covalent Natural Framework-Included Nanofibrous membrane as an Clever platform for Wound Dressing. ACS Appl Mater Interfaces. 2022;14:8680–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar B, Wu F, Wang X, Track Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N et al. An optimally designed Engineering Exosome–Reductive COF Built-in Nanoagent for synergistically enhanced Diabetic Fester Wound Therapeutic. Small 2022, 18.

  • Zhang H, Fan T, Chen W, Li Y, Wang B. Latest advances of two-dimensional supplies in good drug supply nano-systems. Bioactive Mater. 2020;5:1071–86.

    Article 

    Google Scholar
     

  • Chen Y, Wu Y, Solar B, Liu S, Liu H. Two-dimensional nanomaterials for Most cancers Nanotheranostics. Small 2017, 13.

  • Ji D-Ok, Ménard-Moyon C, Bianco A. Bodily-triggered nanosystems based mostly on two-dimensional supplies for most cancers theranostics. Adv Drug Deliv Rev. 2019;138:211–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles