American Diabetes Affiliation. 2. Classification and prognosis of diabetes: requirements of medical care in diabetes-2021. Diabetes Care. 2021;44:S15–33.
McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5:47.
Czech MP. Insulin motion and resistance in weight problems and kind 2 diabetes. Nat Med. 2017;23:804–14.
Zhao Y, Zhou X, Zhao X, Yu X, Wang A, Chen X, Qi H, Han TL, Zhang H, Baker PN. Metformin administration throughout being pregnant attenuated the long-term maternal metabolic and cognitive impairments in a mouse mannequin of gestational diabetes. Growing old. 2020;12:14019–36.
Wang A, Luo B, Chen Z, Xia Y, Chen C, Qi H, Baker PN, Saffery R, Han TL, Zhang H. Rodents on a high-fat eating regimen born to moms with gestational diabetes exhibit sex-specific lipidomic modifications in reproductive organs. Acta Biochim Biophys Sin (Shanghai). 2022;54:736–47.
Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Mobile mechanisms for insulin resistance in regular being pregnant and gestational diabetes. Diabetes Care. 2007;30(Suppl 2):S112–119.
Fasshauer M, Bluher M, Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014;2:488–99.
Mori MA, Ludwig RG, Garcia-Martin R, Brandao BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and illness. Cell Metab. 2019;30:656–73.
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP, Rodrigues G, Molina H, Heissel S, et al. Extracellular vesicle and particle biomarkers outline a number of human cancers. Cell. 2020;182:1044–e10611018.
Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.
Valadi H, Ekstrom Ok, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated switch of mRNAs and microRNAs is a novel mechanism of genetic trade between cells. Nat Cell Biol. 2007;9:654–9.
Salomon C, Torres MJ, Kobayashi M, Scholz-Romero Ok, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell MD, Rice GE. A gestational profile of placental exosomes in maternal plasma and their results on endothelial cell migration. PLoS ONE. 2014;9:e98667.
Salomon C, Scholz-Romero Ok, Sarker S, Sweeney E, Kobayashi M, Correa P, Longo S, Duncombe G, Mitchell MD, Rice GE, Illanes SE. Gestational diabetes mellitus is related to modifications within the focus and bioactivity of placenta-derived exosomes in maternal circulation throughout gestation. Diabetes. 2016;65:598–609.
Freeman DW, Noren Hooten N, Eitan E, Inexperienced J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, et al. Altered extracellular vesicle focus, cargo, and performance in diabetes. Diabetes. 2018;67:2377–88.
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Search engine optimisation JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171:372–e384312.
Castano C, Mirasierra M, Vallejo M, Novials A, Parrizas M. Supply of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity by means of down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci U S A. 2020;117:30335–43.
Anfossi S, Babayan A, Pantel Ok, Calin GA. Medical utility of circulating non-coding RNAs – an replace. Nat Rev Clin Oncol. 2018;15:541–63.
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.
Eulalio A, Huntzinger E, Izaurralde E. Attending to the basis of miRNA-mediated gene silencing. Cell. 2008;132:9–14.
Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes present a protecting and enriched supply of miRNA for biomarker profiling in comparison with intracellular and cell-free blood. J Extracell Vesicles. 2014;3:23743.
Gillet V, Ouellet A, Stepanov Y, Rodosthenous RS, Croft EK, Brennan Ok, Abdelouahab N, Baccarelli A, Takser L. miRNA profiles in extracellular vesicles from serum early in pregnancies sophisticated by gestational diabetes mellitus. J Clin Endocrinol Metab. 2019;104:5157–69.
Nair S, Guanzon D, Jayabalan N, Lai A, Scholz-Romero Ok, Kalita de Croft P, Ormazabal V, Palma C, Diaz E, McCarthy EA, et al. Extracellular vesicle-associated miRNAs are an adaptive response to gestational diabetes mellitus. J Transl Med. 2021;19:360.
Ye Z, Wang S, Huang X, Chen P, Deng L, Li S, Lin S, Wang Z, Liu B. Plasma exosomal miRNAs related to metabolism as early predictor of gestational diabetes mellitus. Diabetes. 2022;71:2272–83.
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Lack of insulin signaling in hepatocytes results in extreme insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, et al. Adipose-derived circulating miRNAs regulate gene expression in different tissues. Nature. 2017;542:450–5.
Worldwide Affiliation of D, Being pregnant Research Teams, Consensus P, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, et al. Worldwide affiliation of diabetes and being pregnant research teams suggestions on the prognosis and classification of hyperglycemia in being pregnant. Diabetes Care. 2010;33:676–82.
McDonald MK, Capasso KE, Ajit SK. Purification and microRNA profiling of exosomes derived from blood and tradition media. J Vis Exp. 2013;76:e50294.
Cabral F, Miller CM, Kudrna KM, Hass BE, Daubendiek JG, Kellar BM, Harris EN. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. J Vis Exp. 2018;132:56993.
Zhang Y, Zhou B, Zhang F, Wu J, Hu Y, Liu Y, Zhai Q. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes. 2012;61:1434–43.
Mithieux G. Transcription issue p63, a member of the p53 household of tumour suppressors, regulates hepatic glucose metabolism. Intestine. 2023;72:415–6.
Chen H, Wang SH, Chen C, Yu XY, Zhu JN, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. A novel function of FoxO3a within the migration and invasion of trophoblast cells: from metabolic reworking to transcriptional reprogramming. Mol Med. 2022;28:92.
Han TL, Cannon RD, Gallo SM, Villas-Boas SG. A metabolomic research of the impact of Candida albicans glutamate dehydrogenase deletion on progress and morphogenesis. NPJ Biofilms Microbiomes. 2019;5:13.
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62.
Sala D, Cunningham TJ, Stec MJ, Etxaniz U, Nicoletti C, Dall’Agnese A, Puri PL, Duester G, Latella L, Sacco A. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage development by inducing mitochondrial respiration. Nat Commun. 2019;10:1796.
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles within the growing older microenvironment and age-related ailments. J Extracell Vesicles. 2021;10:e12154.
Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM, Ghaben AL, An YA, Sadek HA, Gordillo R, Akgul Y, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically careworn adipocytes. Cell Metab. 2021;33:1853–e18681811.
James-Allan LB, Devaskar SU. Extracellular vesicles and their function in gestational diabetes mellitus. Placenta. 2021;113:15–22.
Haeusler RA, Accili D. The double lifetime of Irs. Cell Metab. 2008;8:7–9.
Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and close to infrared-labeled human umbilical twine mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics. 2019;9:2325–45.
Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mager I, Vader P, Lee Y, Sork H, Seow Y, et al. Extracellular vesicle in vivo biodistribution is decided by cell supply, route of administration and concentrating on. J Extracell Vesicles. 2015;4:26316.
Moghimi SM, Hunter AC, Murray JC. Lengthy-circulating and target-specific nanoparticles: principle to follow. Pharmacol Rev. 2001;53:283–318.
Braet F, Wisse E. Structural and useful elements of liver sinusoidal endothelial cell fenestrae: a assessment. Comp Hepatol. 2002;1:1.
Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological ideas. Occup Med (Lond). 2006;56:307–11.
Sarin H. Physiologic higher limits of pore dimension of various blood capillary sorts and one other perspective on the twin pore principle of microvascular permeability. J Angiogenes Res. 2010;2:14.
Patti ME, Corvera S. The function of mitochondria within the pathogenesis of sort 2 diabetes. Endocr Rev. 2010;31:364–95.
Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-‘t Hoen EN, de Jager W, Wauben MH, Kalkhoven E. Impact of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obes (Silver Spring). 2014;22:2216–23.
Lu SC. Regulation of glutathione synthesis. Mol Points Med. 2009;30:42–59.
Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martinez C, Ricart W, Rieusset J, et al. Profiling of circulating microRNAs reveals frequent microRNAs linked to sort 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.
Rahimi G, Jafari N, Khodabakhsh M, Shirzad Z, Dogaheh HP. Upregulation of microRNA processing enzymes Drosha and Dicer in gestational diabetes mellitus. Gynecol Endocrinol. 2015;31:156–9.
Massaro JD, Polli CD, Costa ESM, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, et al. Put up-transcriptional markers related to scientific issues in sort 1 and kind 2 diabetes mellitus. Mol Cell Endocrinol. 2019;490:1–14.
Weale CJ, Matshazi DM, Davids SFG, Raghubeer S, Erasmus RT, Kengne AP, Davison GM, Matsha TE. Expression profiles of circulating microRNAs in South African sort 2 diabetic people on remedy. Entrance Genet. 2021;12:702410.
Weale CJ, Matshazi DM, Davids SFG, Raghubeer S, Erasmus RT, Kengne AP, Davison GM, Matsha TE. MicroRNAs-1299, -126-3p and – 30e-3p as potential diagnostic biomarkers for prediabetes. Diagnostics (Basel). 2021;11:949.
Zhang F, Li SP, Zhang T, Yu B, Zhang J, Ding HG, Ye FJ, Yuan H, Ma YY, Pan HT, He Y. Excessive throughput microRNAs sequencing profile of serum exosomes in girls with and with out polycystic ovarian syndrome. PeerJ. 2021;9:e10998.
Buettner C, Pocai A, Muse ED, Etgen AM, Myers MG Jr., Rossetti L. Essential function of STAT3 in leptin’s metabolic actions. Cell Metab. 2006;4:49–60.
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in most cancers: new and sudden organic capabilities. Nat Rev Most cancers. 2014;14:736–46.
Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek Ok, Szelag M, Gornicka A, et al. Operate of mitochondrial Stat3 in mobile respiration. Science. 2009;323:793–7.
Gough DJ, Corlett A, Schlessinger Ok, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 helps ras-dependent oncogenic transformation. Science. 2009;324:1713–6.
Camporeale A, Demaria M, Monteleone E, Giorgi C, Wieckowski MR, Pinton P, Poli V. STAT3 actions and vitality metabolism: harmful liaisons. Cancers (Basel). 2014;6:1579–96.
Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, et al. FAM3A prompts PI3K p110alpha/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology. 2014;59:1779–90.
Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L, Chang Y, Geng B, Solar L, Dou L, et al. NFE2 induces mir-423-5p to advertise gluconeogenesis and hyperglycemia by repressing the hepatic FAM3A-ATP-Akt pathway. Diabetes. 2017;66:1819–32.
Katayama M, Wiklander OPB, Fritz T, Caidahl Ok, El-Andaloussi S, Zierath JR, Krook A. Circulating exosomal miR-20b-5p is elevated in sort 2 diabetes and will impair insulin motion in human skeletal muscle. Diabetes. 2019;68:515–26.
Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa Ok, Hashimoto N, Kido Y, Mori T, Sakaue H, et al. Position of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10:168–74.
Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14:32–42.