Guo, T. et al. Giant-scale, panchromatic structural shade manipulation through thermal trimming. Adv. Choose. Mater. 10, 2101546 (2022).
Wang, H. C. et al. Ultrathin planar cavity metasurfaces. Small 14, e1703920 (2018).
Ding, F. et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface method. ACS Nano 9, 4111–4119 (2015).
Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex era. Nano Lett. 14, 1394–1399 (2014).
Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic shade gradients and darkish blacks. Mild. Sci. Appl. 11, 118 (2022).
Xiong, Ok. et al. Video-rate switching of high-reflectivity hybrid cavities spanning all main colours. Adv. Mater. 35, e2302028 (2023).
Williams, C., Gordon, G. S. D., Wilkinson, T. D. & Bohndiek, S. E. Grayscale-to-color: scalable fabrication of customized multispectral filter arrays. ACS Photon. 6, 3132–3141 (2019).
Daqiqeh Rezaei, S. et al. Tunable, value‐efficient, and scalable structural colours for sensing and client merchandise. Adv. Choose. Mater. 7, 1900735 (2019).
Kats, M. A. & Capasso, F. Optical absorbers based mostly on sturdy interference in ultra-thin movies. Laser Photon. Rev. 10, 735–749 (2016).
Qu, Y. et al. Thermal camouflage based mostly on the phase-changing materials GST. Mild. Sci. Appl. 7, 26 (2018).
Kim, I. et al. Nanophotonics for mild detection and ranging expertise. Nat. Nanotechnol. 16, 508–524 (2021).
He, N. et al. Extremely compact all-solid-state beam steering module based mostly on a metafiber. ACS Photon. 9, 3094–3101 (2022).
Tang, J. et al. Dynamic augmented actuality show by layer-folded metasurface through electrical-driven liquid crystal. Adv. Choose. Mater. 10, 2200418 (2022).
Driencourt, L. et al. Electrically tunable multicolored filter utilizing birefringent plasmonic resonators and liquid crystals. ACS Photon. 7, 444–453 (2020).
Sharma, M., Hendler, N. & Ellenbogen, T. Electrically switchable shade tags based mostly on lively liquid-crystal plasmonic metasurface platform. Adv. Choose. Mater. 8, 1901182 (2020).
Guo, T. et al. Broad-tuning, dichroic metagrating Fabry-Perot filter based mostly on liquid crystal for spectral imaging. Prog. Electromagn. Res. 177, 43–51 (2023).
Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).
Gao, B., Ren, M., Wu, W., Cai, W. & Xu, J. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron. 64, 240362 (2021).
Karvounis, A. et al. Electro‐optic metasurfaces based mostly on barium titanate nanoparticle movies. Adv. Choose. Mater. 8, 2000623 (2020).
Damgaard-Carstensen, C., Thomaschewski, M., Ding, F. & Bozhevolnyi, S. I. Electrical tuning of Fresnel lens in reflection. ACS Photon. 8, 1576–1581 (2021).
Yao, Y. et al. Electrically tunable metasurface good absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).
Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection part and polarization management in metasurfaces. Nano Lett. 17, 407–413 (2017).
Park, J. et al. All-solid-state spatial mild modulator with unbiased part and amplitude management for three-dimensional LiDAR functions. Nat. Nanotechnol. 16, 69–76 (2021).
Xiong, Ok. et al. Switchable plasmonic metasurfaces with excessive chromaticity containing solely ample metals. Nano Lett. 17, 7033–7039 (2017).
Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic color show. Nat. Commun. 8, 14606 (2017).
Hopmann, E. & Elezzabi, A. Y. Plasmochromic nanocavity dynamic mild shade switching. Nano Lett. 20, 1876–1882 (2020).
Yan, Z. et al. Floating solid-state skinny movies with dynamic structural color. Nat. Nanotechnol. 16, 795–801 (2021).
Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change movies. Nature 511, 206–211 (2014).
Liu, L., Kang, L., Mayer, T. S. & Werner, D. H. Hybrid metamaterials for electrically triggered multifunctional management. Nat. Commun. 7, 13236 (2016).
Castillo, S. G. et al. 57‐4: strong state reflective show (SRD) with LTPS Diode backplane. In SID Symposium Digest of Technical Papers Vol. 50 807–810 (Society for Data Show, 2019).
Kim, Y. et al. Section modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).
Zheng, J. et al. Nonvolatile electrically reconfigurable built-in photonic change enabled by a silicon PIN diode heater. Adv. Mater. 32, e2001218 (2020).
Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface utilizing low-loss optical phase-change materials. Nat. Nanotechnol. 16, 661–666 (2021).
Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).
Bhaskaran, H. & Pernice, W. (eds) Section Change Supplies-Primarily based Photonic Computing (Elsevier, 2024).
Bhaskaran, H., Hosseini, P., Broughton, B. & Bodle Applied sciences Ltd. Show equipment. US patent 0384075 A1 (2019).
Dong, W. et al. Large bandgap part change materials tuned seen photonics. Adv. Funct. Mater. 29, 1806181 (2019).
Cueff, S. et al. VO2 nanophotonics. APL Photon. 5, 0028093 (2020).
Howes, A. et al. Optical limiting based mostly on Huygens’ metasurfaces. Nano Lett. 20, 4638–4644 (2020).
King, J. et al. Electrically tunable VO2–steel metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photon. 18, 74–80 (2024).
Shu, F. Z. et al. Electrically pushed tunable broadband polarization states through lively metasurfaces based mostly on Joule-heat-induced part transition of vanadium dioxide. Laser Photon. Rev. 15, 2100155 (2021).
Shu, F. Z. et al. Dynamic plasmonic shade era based mostly on part transition of vanadium dioxide. Adv. Choose. Mater. 6, 1700939 (2018).
Zhao, J. et al. Versatile dynamic structural shade based mostly on an ultrathin uneven Fabry-Perot cavity with phase-change materials for temperature notion. Choose. Specific 29, 23273–23281 (2021).
Kats, M. A. et al. Extremely-thin good absorber using a tunable part change materials. Appl. Phys. Lett. 101, 221101 (2012).
Tang, Ok. et al. Temperature-adaptive radiative coating for all-season family thermal regulation. Science 374, 1504–1509 (2021).
Wang, S. et al. Scalable thermochromic sensible home windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021).
Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change supplies: in direction of miniaturized beyond-binary reconfigurable built-in photonics. Choose. Specific 29, 20449–20462 (2021).
Zhou, W. et al. In-memory photonic dot-product engine with electrically programmable weight banks. Nat. Commun. 14, 2887 (2023).
Chen, B. et al. Programmable terahertz metamaterials with non‐unstable reminiscence. Laser Photon. Rev. 16, 2100472 (2022).
Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice using nanostructured phase-change supplies. Nano Lett. 17, 4881–4885 (2017).
Hallman, Ok. A., Miller, Ok. J., Baydin, A., Weiss, S. M. & Haglund, R. F. Sub-picosecond response time of a hybrid VO2:silicon waveguide at 1550 nm. Adv. Choose. Mater. 9, 2001721 (2021).
Horade, M., Kojima, M., Kamiyama, Ok., Mae, Y. & Arai, T. Improvement of a novel 2-dimensional micro-heater array system with regional selective heating. Mech. Eng. Res 6, 66–75 (2016).
Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).
Li, A. et al. Advances in cost-effective built-in spectrometers. Mild. Sci. Appl. 11, 174 (2022).
Zangeneh Kamali, Ok. et al. Electrically programmable solid-state metasurfaces through flash localised heating. Mild. Sci. Appl. 12, 40 (2023).
Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).
Lin, Z. et al. Low-cost, high-speed multispectral imager through spatiotemporal modulation based mostly on a shade digital camera. Choose. Specific 31, 42613–42623 (2023).
Meng, J., Cadusch, J. J. & Crozier, Ok. B. Detector-only spectrometer based mostly on structurally coloured silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2019).
Guo, T. & He, S. Supply information for ‘Sturdy and programmable ultrafast nanophotonic matrix of spectral pixels’. figshare https://doi.org/10.6084/m9.figshare.26183465.v2 (2024).