Tumor microenvironment transforming with a telomere-targeting agent and its cooperative antitumor results with a nanovaccine | Journal of Nanobiotechnology

Tumor microenvironment transforming with a telomere-targeting agent and its cooperative antitumor results with a nanovaccine | Journal of Nanobiotechnology


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71(3):209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Sugarman ET, Zhang G, Shay JW. In perspective: an replace on telomere focusing on in most cancers. Mol Carcinog. 2019;58(9):1581–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizukoshi E, Kaneko S. Telomerase-targeted most cancers immunotherapy. Int J Mol Sci. 2019;20(8):1823.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man RJ, Chen LW, Zhu HL. Telomerase inhibitors: a patent overview (2010–2015). Knowledgeable Opin Ther Pat. 2016;26(6):679–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mender I, LaRanger R, Luitel Ok, Peyton M, Girard L, Lai TP, Batten Ok, Cornelius C, Dalvi MP, Ramirez M, Du W, Wu LF, Altschuler SJ, Brekken R, Martinez ED, Minna JD, Wright WE, Shay JW. Telomerase-mediated technique for overcoming non-small cell lung most cancers focused remedy and chemotherapy resistance. Neoplasia. 2018;20(8):826–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta S, Sobo M, Lee Ok, Senthil Kumar S, White AR, Mender I, Fuller C, Chow LML, Fouladi M, Shay JW, Drissi R. Induced telomere harm to deal with telomerase expressing therapy-resistant pediatric mind tumors. Mol Most cancers Ther. 2018;17(7):1504–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang G, Wu LW, Mender I, Barzily-Rokni M, Hammond MR, Ope O, Cheng C, Vasilopoulos T, Randell S, Sadek N, Beroard A, Xiao M, Tian T, Tan J, Saeed U, Sugarman E, Krepler C, Brafford P, Sproesser Ok, Murugan S, Somasundaram R, Garman B, Wubbenhorst B, Woo J, Yin X, Liu Q, Frederick DT, Miao B, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Kwong LN, Amaravadi RK, Lu Y, Boland GM, Wei Z, Nathanson Ok, Herbig U, Mills GB, Flaherty KT, Herlyn M, Shay JW. Induction of telomere dysfunction prolongs illness management of therapy-resistant melanoma. Scientific Most cancers Res Off J Am Assoc Most cancers Res. 2018;24(19):4771–84.

    Article 
    CAS 

    Google Scholar
     

  • Yu S, Wei S, Savani M, Lin X, Du Ok, Mender I, Siteni S, Vasilopoulos T, Reitman ZJ, Ku Y, Wu D, Liu H, Tian M, Chen Y, Labrie M, Charbonneau CM, Sugarman E, Bowie M, Hariharan S, Waitkus M, Jiang W, McLendon RE, Pan E, Khasraw M, Walsh KM, Lu Y, Herlyn M, Mills G, Herbig U, Wei Z, Keir ST, Flaherty Ok, Liu L, Wu Ok, Shay JW, Abdullah Ok, Zhang G, Ashley DM. A modified nucleoside 6-Thio-2’-deoxyguanosine displays antitumor exercise in gliomas. Clin Most cancers Res Off J Am Assoc Most cancers Res. 2021;27(24):6800–14.

    Article 
    CAS 

    Google Scholar
     

  • Mender I, Gryaznov S, Dikmen ZG, Wright WE, Shay JW. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2’-deoxyguanosine. Most cancers Discov. 2015;5(1):82–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mender I, Gryaznov S, Shay JW. A novel telomerase substrate precursor quickly induces telomere dysfunction in telomerase optimistic most cancers cells however not telomerase silent regular cells. Oncoscience. 2015;2(8):693–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mender I, Zhang A, Ren Z, Han C, Deng Y, Siteni S, Li H, Zhu J, Vemula A, Shay JW, Fu YX. Telomere stress potentiates STING-dependent anti-tumor immunity. Most cancers Cell. 2020;38(3):400-411.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and demise. Nat Immunol. 2022;23(4):487–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell demise and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo Ok. Immunogenic cell demise prompts the tumor immune microenvironment to spice up the immunotherapy effectivity. Adv Sci. 2022;9(22):e2201734.

    Article 

    Google Scholar
     

  • Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell demise and its relevance for most cancers remedy. Cell Demise Dis. 2020;11(11):1013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, Kastritis E, Terpos E, Dimopoulos MA, Kalbacher H, Livaniou E, Christodoulou MI, Tsitsilonis OE. Immunogenic cell demise, DAMPs and Prothymosin α as a putative anticancer immune response biomarker. Cells. 2022;11(9):1415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatsuno Ok, Yamazaki T, Hanlon D, Han P, Robinson E, Sobolev O, Yurter A, Rivera-Molina F, Arshad N, Edelson RL, Galluzzi L. Extracorporeal photochemotherapy induces bona fide immunogenic cell demise. Cell Demise Dis. 2019;10(8):578.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed A, Tait SWG. Concentrating on immunogenic cell demise in most cancers. Mol Oncol. 2020;14(12):2994–3006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of radiotherapy-induced immunogenic cell demise. Cells. 2021;10(4):930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge JC, Uecker D. Nano-pulse stimulation is a bodily modality that may set off immunogenic tumor cell demise. J Immunother Most cancers. 2017;5:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell demise for nanomedicine-based most cancers chemo-immunotherapy. Nanoscale. 2021;13(41):17218–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A, Sigismund S, Ravenda PS, Bonaldi T, Zampino MG, Cancelliere C, Di Fiore PP, Bardelli A, Penna G, Rescigno M. The EGFR-specific antibody cetuximab mixed with chemotherapy triggers immunogenic cell demise. Nat Med. 2016;22(6):624–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Métivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell demise. J Exp Med. 2005;202(12):1691–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Duan B, Bai J, Luo Y, Ma Y. Telomerase inhibitor 6-Thio-2’-deoxyguanosine induces immunogenic cell demise in tumour cells. Chin J Cell Biol. 2024;46(2):214–25.


    Google Scholar
     

  • Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD. Immunosuppressive myeloid-derived suppressor cells are elevated in splenocytes from most cancers sufferers. Most cancers Immunol Immunother CII. 2017;66(4):503–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune exercise. Clin Most cancers Res Off J Am Assoc Most cancers Res. 2005;11(18):6713–21.

    Article 
    CAS 

    Google Scholar
     

  • Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F, Wang J, Yue H, Gao X, Jia R, Wei W, Ma G. Biomineralized bacterial outer membrane vesicles potentiate protected and environment friendly tumor microenvironment reprogramming for anticancer remedy. Adv Mater. 2020;32(47):2002085.

    Article 
    CAS 

    Google Scholar
     

  • Hua L, Yang Z, Li W, Zhang Q, Ren Z, Ye C, Zheng X, Li D, Lengthy Q, Bai H, Solar W, Yang X, Zheng P, He J, Chen Y, Huang W, Ma Y. A Novel Immunomodulator supply platform based mostly on bacterial biomimetic vesicles for enhanced antitumor immunity. Superior Mater. 2021;33(43):2103923.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Zhang Q, Bai H, Huang W, Shu C, Ye C, Solar W, Ma Y. Self-assembled nanofibers elicit potent HPV16 E7-specific mobile immunity and abolish established TC-1 graft tumor. Int J Nanomed. 2019;14:8209–19.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Zhu W, Ye C, Solar W, Xie H, Yang X, Zhang Q, Ma Y. Native mucosal immunization of self-assembled nanofibers elicits sturdy antitumor results in an orthotopic mannequin of mouse genital tumors. Nanoscale. 2020;12(5):3076–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Main, adaptive, and purchased resistance to most cancers immunotherapy. Cell. 2017;168(4):707–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binnewies M, Roberts EW, Kersten Ok, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat Med. 2018;24(5):541–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Shi Y, Wang Q, Qi T, Fu X, Gu Z, Zhang Y, Zhai G, Zhao X, Solar Q, Lin G. Enzyme responsiveness enhances the specificity and effectiveness of nanoparticles for the therapy of B16F10 melanoma. J Controll Launch Off J Managed Launch Soc. 2019;316:208–22.

    Article 
    CAS 

    Google Scholar
     

  • Shay JW, Wright WE. Telomerase therapeutics for most cancers: challenges and new instructions. Nat Rev Drug Discovery. 2006;5(7):577–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harley CB. Telomerase and most cancers therapeutics. Nat Rev Most cancers. 2008;8(3):167–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological results of standard chemotherapy and focused anticancer brokers. Most cancers Cell. 2015;28(6):690–714.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological elements of most cancers chemotherapy. Nat Rev Immunol. 2008;8(1):59–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gianni T, Leoni V, Sanapo M, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G, Vannini A. Genotype of immunologically scorching or chilly tumors determines the antitumor immune response and efficacy by absolutely virulent retargeted oHSV. Viruses. 2021;13(9):1747.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni G, Yang X, Li J, Wu X, Liu Y, Li H, Chen S, Fogarty CE, Frazer IH, Chen G, Liu X, Wang T. Intratumoral injection of caerin 1.1 and 1.9 peptides will increase the efficacy of vaccinated TC-1 tumor-bearing mice with PD-1 blockade by modulating macrophage heterogeneity and the activation of CD8(+) T cells within the tumor microenvironment. Clin Trans Immunol. 2021;10(8):1335.

    Article 

    Google Scholar
     

  • Noman MZ, Parpal S, Van Moer Ok, Xiao M, Yu Y, Viklund J, De Milito A, Hasmim M, Andersson M, Amaravadi RK, Martinsson J, Berchem G, Janji B. Inhibition of Vps34 reprograms chilly into scorching infected tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci Adv. 2020;6(18):eaax7881.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. PLoS ONE. 2011;6(8): e24226.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffell B, Coussens LM. Macrophages and therapeutic resistance in most cancers. Most cancers Cell. 2015;27(4):462–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J, Kim JH, Lee SW, Gho YS. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8(1):626.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing R, Liu G, Zhu J, Hou Y, Chen X. Useful magnetic nanoparticles for non-viral gene supply and MR imaging. Pharm Res. 2014;31(6):1377–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Yan S, Zhang L, Zhao B, Zhu C, Deng G, Liu J. A self-degrading and NIR-II emissive sort I/II photosensitizer with synergistic photodynamic and photothermal properties for antibacterial and anticancer. Sens Actuators B Chem. 2024;405: 135346.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Lengthy Q, Huang W, Ma Y. Engineered bacterial biomimetic vesicles reprogram tumor-associated macrophages and transform tumor microenvironment to advertise innate and adaptive antitumor immune responses. ACS Nano. 2024;18(9):6863–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Gu Z, Fan Y, Zhai G, Zhao X, Solar Q, Shi Y, Lin G. Inhibition of the adenosinergic pathway: the indispensable a part of oncological remedy sooner or later. Purinergic Sign. 2019;15(1):53–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • THIO sequenced with cemiplimab in superior NSCLC. https://tinyurl.com/mr3rjuw3 (Accessed 5 Feb, 2025).

  • MAIA Biotechnology declares optimistic efficacy updates for section 2 THIO-101 trial in superior non-small cell lung most cancers. https://tinyurl.com/ypuvs8e2 (Accessed 5 Feb, 2025).

  • Zhang Q, Huang W, Yuan M, Li W, Hua L, Yang Z, Gao F, Li S, Ye C, Chen Y, He J, Solar W, Yang X, Bai H, Ma Y. Using ATP as a brand new adjuvant promotes the induction of sturdy antitumor mobile immunity by a PLGA nanoparticle vaccine. ACS Appl Mater Interf. 2020;12(49):54399–414.

    Article 
    CAS 

    Google Scholar
     

  • Weber R, Riester Z, Hüser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capability of MDSC in murine melanoma. J Immunother Most cancers. 2020;8(2):000949.

    Article 

    Google Scholar
     

  • Li T, Li X, Zamani A, Wang W, Lee CN, Li M, Luo G, Eiler E, Solar H, Ghosh S, Jin J, Murali R, Ruan Q, Shi W, Chen YH. c-Rel Is a myeloid checkpoint for most cancers immunotherapy. Nature most cancers. 2020;1(5):507–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Hu Y, Zhang Q, Hua L, Yang Z, Ren Z, Zheng X, Huang W, Ma Y. Growth of drug-resistant Klebsiella pneumoniae vaccine through novel vesicle manufacturing expertise. ACS Appl Mater Interf. 2021;13(28):32703–15.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, He J, Yang Z, Fu Y, Yang Y, Li W, Ding Y, Yang X, Ma Y. Neoantigen-based nanovaccine together with immune checkpoint inhibitors abolish postsurgical tumor recurrence and metastasis. Small. 2023;19(50): e2302922.

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *