Kodigala, A. et al. Lasing motion from photonic sure states in continuum. Nature 541, 196–199 (2017).
Zhang, X., Kwon, Ok., Henriksson, J., Luo, J. & Wu, M. C. A big-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).
Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR utilizing chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).
Zhou, H. et al. Excellent single-sided radiation and absorption with out mirrors. Optica 3, 1079–1086 (2016).
Melati, D. et al. Mapping the worldwide design house of nanophotonic elements utilizing machine studying sample recognition. Nat. Commun. 10, 4775 (2019).
Dregely, D. et al. 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2, 267 (2011).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Li, S. et al. Part-only transmissive spatial mild modulator primarily based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Decker, M. et al. Excessive-efficiency dielectric Huygens’ surfaces. Adv. Choose. Mater. 3, 813–820 (2015).
Moritake, Y. & Notomi, M. Switchable unidirectional radiation from Huygens dipole fashioned at an distinctive level in non-Hermitian plasmonic programs. ACS Photon. 10, 667–672 (2023).
Yin, X., Jin, J., Soljačić, M. & Zhen, B. Commentary of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).
Kim, N. et al. Extremely angle-sensitive and environment friendly optical metasurfaces with damaged mirror symmetry. Nanophotonics 12, 2347–2358 (2023).
Yin, X., Inoue, T., Peng, C. & Noda, S. Topological unidirectional guided resonances emerged from interband coupling. Phys. Rev. Lett. 130, 056401 (2023).
Wade, M. T. et al. 75% environment friendly huge bandwidth grating couplers in a forty five nm microelectronics CMOS course of. In Proc. 2015 IEEE Optical Interconnects Convention 46–47 (IEEE, 2015).
Lee, Ok. et al. Artificial topological nodal part in bilayer resonant gratings. Phys. Rev. Lett. 128, 053002 (2022).
Lee, Ok. Y., Yoo, Ok. W., Monticone, F. & Yoon, J. W. Dirac bilayer metasurfaces as an inverse Gires-Tournois etalon. Preprint at https://arxiv.org/abs/2311.08766 (2023).
Nguyen, D.-H.-M. et al. Reconfigurable topological lasing by means of Thouless pumping in bilayer photonic crystal. Preprint at https://arxiv.org/abs/2111.02843v5 (2021).
Nguyen, D.-H.-M., Devescovi, C., Nguyen, D. X., Nguyen, H. S. & Bercioux, D. Fermi arc reconstruction in artificial photonic lattice. Phys. Rev. Lett. 131, 053602 (2023).
Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystals: almost-perfect flatbands and unconventional localization. Phys. Rev. Res. 4, L032031 (2022).
Nguyen, H. S. et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones. Phys. Rev. Lett. 120, 066102 (2018).
Zeng, Y., Hu, G., Liu, Ok., Tang, Z. & Qiu, C. Dynamics of topological polarization singularity in momentum house. Phys. Rev. Lett. 127, 176101 (2021).
Letartre, X. et al. Analytical non-Hermitian description of photonic crystals with arbitrary lateral and transverse symmetry. Phys. Rev. A 106, 033510 (2022).
Hwang, J. et al. Fabry-Perot cavity resonance enabling extremely polarization-sensitive double-layer gold grating. Sci. Rep. 8, 14787 (2018).
Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Choose. Lett. 22, 132–134 (1997).
Xue, H., Wang, Q., Zhang, B. & Chong, Y. D. Non-Hermitian Dirac cones. Phys. Rev. Lett. 124, 236403 (2020).
Kazarinov, R. & Henry, C. Second-order distributed suggestions lasers with mode choice supplied by first-order radiation losses. IEEE J. Quantum Electron. 21, 144–150 (1985).
Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode idea for the Fano resonance in optical resonators. J. Choose. Soc. Am. 20, 569–572 (2003).
Hsu, C. et al. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Choose. Mater. 7, 1900239 (2019).
Lee, S. W., Lee, J. S., Choi, W. H. & Gong, S. Ultrathin WS2 polariton waveguide for environment friendly mild guiding. Adv. Choose. Mater. 11, 2300069 (2023).
Lee, S. W., Lee, J. S., Choi, W. H., Choi, D. & Gong, S. Extremely-compact exciton polariton modulator primarily based on van der Waals semiconductors. Nat. Commun. 15, 2331 (2024).
Cho, H., Shin, D., Sung, J. & Gong, S. Extremely-thin grating coupler for guided exciton-polaritons in WS2 multilayers. Nanophotonics 12, 2563 (2023).
Purdie, D. G. et al. Cleansing interfaces in layered supplies heterostructures. Nat. Commun. 9, 5387 (2018).
Zatko, V. et al. Band-Hole Panorama Engineering in Giant-Scale 2D Semiconductor van der Waals Heterostructures. ACS Nano 15, 7279–7289 (2021).
Purcell, E. M. Spontaneous emission chances at radio frequencies. Phys. Rev. 69, 674 (1946).
Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic sure states within the continuum. Nat. Photonics 11, 232–236 (2017).
Cerjan, A. et al. Commentary of sure states within the continuum embedded in symmetry bandgaps. Sci. Adv. 7, 52 (2021).
Andrzejewski, D. et al. Versatile Giant-Space Gentle-Emitting Gadgets Primarily based on WS2 Monolayers. Adv. Choose. Mater. 8, 20 (2020).
Liu, H. et al. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).
Guarneri, L. et al. Temperature-dependent excitonic mild manipulation with atomically skinny optical components. Nano Lett. 24, 6240–6246 (2024).
Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Pressure engineering of 2D semiconductors and graphene: from pressure fields to band-structure tuning and photonic purposes. Gentle.: Sci. Appl. 9, 190 (2020).
Wang, H. et al. Ultralow-loss optical interconnect enabled by topological unidirectional guided resonance. Sci. Adv. 10, 12 (2024).
Li, Y. et al. Measurement of the optical dielectric perform of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).