Ferumoxytol promotes haematopoietic stem cell post-injury regeneration as a reactive oxygen species scavenger

Ferumoxytol promotes haematopoietic stem cell post-injury regeneration as a reactive oxygen species scavenger


  • Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, A. et al. Dormant and self-renewing hematopoietic stem cells and their niches. Ann. N. Y. Acad. Sci. 1106, 64–75 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batsivari, A. et al. Dynamic responses of the haematopoietic stem cell area of interest to various stresses. Nat. Cell Biol. 22, 7–17 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmann, J. & Kokkaliaris, Ok. D. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 144, 21–34 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konturek-Ciesla, A., Olofzon, R., Kharazi, S. & Bryder, D. Implications of stress-induced gene expression for hematopoietic stem cell growing old research. Nat. Ageing 4, 177–184 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flach, J. et al. Replication stress is a potent driver of practical decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balassa, Ok., Danby, R. & Rocha, V. Haematopoietic stem cell transplants: rules and indications. Br. J. Hosp. Med. 80, 33–39 (2019).

    Article 

    Google Scholar
     

  • Zhao, M. et al. FGF signaling facilitates postinjury restoration of mouse hematopoietic system. Blood 120, 1831–1842 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, P. et al. The Dlk1-Gtl2 locus preserves LT-HSC operate by inhibiting the PI3K-mTOR pathway to limit mitochondrial metabolism. Cell Stem Cell 18, 214–228 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, Ok. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura-Ishizu, A., Ito, Ok. & Suda, T. Hematopoietic stem cell metabolism throughout growth and growing old. Dev. Cell 54, 239–255 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, C. et al. Mitochondrial serine catabolism safeguards upkeep of the hematopoietic stem cell pool in homeostasis and damage. Cell Stem Cell 31, 1484–1500.e1489 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C. et al. Nynrin preserves hematopoietic stem cell operate by inhibiting the mitochondrial permeability transition pore opening. Cell Stem Cell 31, 1359–1375.e1358 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA harm throughout growing old that’s repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes harm chromosomes and mutate stem cells. Nature 553, 171–177 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, J. et al. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood 143, 1586–1598 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, L. et al. Radiation-induced bystander results impair transplanted human hematopoietic stem cells through oxidative DNA harm. Blood 137, 3339–3350 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, Ok. & Suda, T. Metabolic necessities for the upkeep of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy inside probably the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Y. et al. Conditioning remedy with N-acetyl-l-cysteine, decitabine and modified BUCY routine for myeloid malignancies sufferers previous to allogeneic hematopoietic stem cell transplantation. Am. J. Hematol. 98, 881–889 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R., Jiang, B., Fan, Ok., Gao, L. & Yan, X. Designing nanozymes for in vivo functions. Nat. Rev. Bioeng. 2, 849–868 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wei, T. et al. Janus liposozyme for the modulation of redox and immune homeostasis in contaminated diabetic wounds. Nat. Nanotechnol. 19, 1178–1189 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Multimodal sensible techniques reprogramme macrophages and take away urate to deal with gouty arthritis. Nat. Nanotechnol. 19, 1544–1557 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L. et al. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, C., Li, Y. & Gu, N. Iron-based nanozymes in illness analysis and therapy. ChemBioChem 21, 2722–2732 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, F. et al. Synthetic-enzymes-armed Bifidobacterium longum probiotics for assuaging intestinal irritation and microbiota dysbiosis. Nat. Nanotechnol. 18, 617–627 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. et al. A man-made metabzyme for tumour-cell-specific metabolic remedy. Nat. Nanotechnol. 19, 1712–1722 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for therapy of radiation-induced hematopoietic damage. Biomaterials 293, 121980 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Twin enzyme-like actions of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6, 4001–4012 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trujillo-Alonso, V. et al. FDA-approved ferumoxytol shows anti-leukaemia efficacy towards cells with low ferroportin ranges. Nat. Nanotechnol. 14, 616–622 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiNardo, C. D. et al. Venetoclax mixed with FLAG-IDA induction and consolidation in newly recognized and relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 39, 2768–2778 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattes, Ok., Vellenga, E. & Schepers, H. Differential redox-regulation and mitochondrial dynamics in regular and leukemic hematopoietic stem cells: a possible window for leukemia remedy. Crit. Rev. Oncol. Hematol. 144, 102814 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tarangelo, A. & Dixon, S. J. Nanomedicine: an iron age for most cancers remedy. Nat. Nanotechnol. 11, 921–922 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z. et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano 12, 11355–11365 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Response of MAPK pathway to iron oxide nanoparticles in vitro therapy promotes osteogenic differentiation of hBMSCs. Biomaterials 86, 11–20 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Superparamagnetic iron oxide nanoparticles and static magnetic area regulate neural stem cell proliferation. Entrance. Cell. Neurosci. 15, 815280 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, M. I. et al. Induction of ROS, mitochondrial harm and autophagy in lung epithelial most cancers cells by iron oxide nanoparticles. Biomaterials 33, 1477–1488 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. 3D-printed manganese dioxide included scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by transforming osteo-regenerative microenvironment. Bioact. Mater. 44, 354–370 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Enteric-coated cerium dioxide nanoparticles for efficient inflammatory bowel illness therapy by regulating the redox steadiness and intestine microbiome. Biomaterials 314, 122822 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazuel, F. et al. Huge intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue ranges. ACS Nano 10, 7627–7638 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrera, D. et al. Dynamical magnetic response of iron oxide nanoparticles inside dwell cells. ACS Nano 12, 2741–2752 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sardiello, M. et al. A gene community regulating lysosomal biogenesis and performance. Science 325, 473–477 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson, A. C. et al. Lengthy-term ex vivo haematopoietic-stem-cell enlargement permits nonconditioned transplantation. Nature 571, 117–121 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, E. S. et al. Lengthy-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02360-7 (2024).

  • Bai, T. et al. Enlargement of primitive human hematopoietic stem cells by tradition in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. ADGRG1 enriches for practical human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Make investments. 131, e148329 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourquin, J. et al. Discount of nanoparticle load in cells by mitosis however not exocytosis. ACS Nano 13, 7759–7770 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. A., Åberg, C., Salvati, A. & Dawson, Ok. A. Position of cell cycle on the mobile uptake and dilution of nanoparticles in a cell inhabitants. Nat. Nanotechnol. 7, 62–68 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, D. et al. Lengthy-term destiny monitoring and quantitative analyzing of nanoparticles in stem cells with bright-field microscopy. Nano Right this moment 44, 101506 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of motion and scientific methods. Nat. Rev. Most cancers 3, 330–338 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, C. et al. Selenocystine potentiates most cancers cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA harm and inactivation of the ERK pathway. Free Radic. Biol. Med. 65, 305–316 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Complete physique irradiation causes residual bone marrow damage by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med. 48, 348–356 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues-Moreira, S. et al. Low-dose irradiation promotes persistent oxidative stress and reduces self-renewal in hematopoietic stem cells. Cell Rep. 20, 3199–3211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. Ok. et al. Id1 ablation protects hematopoietic stem cells from stress-induced exhaustion and growing old. Cell Stem Cell 23, 252–265.e258 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Hsu, J. C., Koo, H. & Cormode, D. P. Repurposing ferumoxytol: diagnostic and therapeutic functions of an FDA-approved nanoparticle. Theranostics 12, 796–816 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanganeh, S. et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theruvath, A. J. et al. Monitoring stem cell implants in cartilage defects of minipigs by utilizing ferumoxytol-enhanced MRI. Radiology 292, 129–137 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Thu, M. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell monitoring by magnetic resonance imaging. Nat. Med. 18, 463–467 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Politi, L. S. et al. Magnetic-resonance-based monitoring and quantification of intravenously injected neural stem cell accumulation within the brains of mice with experimental a number of sclerosis. Stem Cells 25, 2583–2592 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermeulen, L. M. P. et al. Endosomal measurement and membrane leakiness affect proton sponge-based rupture of endosomal vesicles. ACS Nano 12, 2332–2345 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rueda-Gensini, L. et al. Tailoring iron oxide nanoparticles for environment friendly mobile internalization and endosomal escape. Nanomaterials 10, 1816 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeulen, L. M. P., De Smedt, S. C., Remaut, Ok. & Braeckmans, Ok. The proton sponge speculation: fable or reality? Eur. J. Pharm. Biopharm. 129, 184–190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. Ok. edgeR: a Bioconductor bundle for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment instruments: paths towards the excellent practical evaluation of enormous gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *