Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics

Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics


  • Li, J. et al. Organic influence of lead from halide perovskites reveals the chance of introducing a protected threshold. Nat. Commun. 11, 310 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Lead immobilization for environmentally sustainable perovskite photo voltaic cells. Nature 617, 687–695 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Improved cost extraction in inverted perovskite photo voltaic cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Tin halide perovskite photo voltaic cells: an rising thin-film photovoltaic expertise. Acc. Mater. Res. 2, 210–219 (2021).

    Article 

    Google Scholar
     

  • Zhu, Z. et al. Clean and compact FASnI3 movies for lead-free perovskite photo voltaic cells with over 14% effectivity. ACS Vitality Lett. 7, 2079–2083 (2022).

    Article 

    Google Scholar
     

  • Wang, J. et al. Controlling the crystallization kinetics of lead-free tin halide perovskites for prime efficiency inexperienced photovoltaics. Adv. Vitality Mater. 11, 2102131 (2021).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Mechanistic understanding of oxidation of tin-based perovskite photo voltaic cells and mitigation methods. Angew. Chem. Int. Ed. 62, e202308093 (2023).

    Article 

    Google Scholar
     

  • Yu, B.-B. et al. Heterogeneous 2D/3D tin-halides perovskite photo voltaic cells with licensed conversion effectivity breaking 14%. Adv. Mater. 33, 2102055 (2021).

    Article 

    Google Scholar
     

  • Li, H. et al. Excessive-member low-dimensional Sn-based perovskite photo voltaic cells. Sci. China Chem. 66, 459–465 (2023).

    Article 

    Google Scholar
     

  • Shao, S. et al. Extremely reproducible Sn-based hybrid perovskite photo voltaic cells with 9% effectivity. Adv. Vitality Mater. 8, 1702019 (2018).

    Article 

    Google Scholar
     

  • Shi, Y., Zhu, Z., Miao, D., Ding, Y. & Mi, Q. Interfacial dipoles enhance open-circuit voltage of tin halide perovskite photo voltaic cells. ACS Vitality Lett. 9, 1895–1897 (2024).

    Article 

    Google Scholar
     

  • Chen, J. et al. Environment friendly tin-based perovskite photo voltaic cells with trans-isomeric fulleropyrrolidine components. Nat. Photon. 18, 464–470 (2024).

    Article 

    Google Scholar
     

  • Li, H. et al. Low-dimensional inorganic tin perovskite photo voltaic cells ready by templated progress. Angew. Chem. Int. Ed. 60, 16330–16336 (2021).

    Article 

    Google Scholar
     

  • Meng, X. et al. Floor-controlled oriented progress of FASnI3 crystals for environment friendly lead-free perovskite photo voltaic cells. Joule 4, 902–912 (2020).

    Article 

    Google Scholar
     

  • Liu, X. et al. Templated progress of FASnI3 crystals for environment friendly tin perovskite photo voltaic cells. Vitality Environ. Sci. 13, 2896–2902 (2020).

    Article 

    Google Scholar
     

  • Liao, Y. et al. Extremely oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic efficiency. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Mechanism of crystal formation in Ruddlesden–Popper Sn-based perovskites. Adv. Funct. Mater. 30, 2001294 (2020).

    Article 

    Google Scholar
     

  • Kieslich, G., Solar, S. & Cheetham, A. Okay. Strong-state rules utilized to natural–inorganic perovskites: new methods for an outdated canine. Chem. Sci. 5, 4712–4715 (2014).

    Article 

    Google Scholar
     

  • Pearson, R. G. Arduous and smooth acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article 

    Google Scholar
     

  • Jiang, X. et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite photo voltaic cells. J. Am. Chem. Soc. 143, 10970–10976 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Flatken, M. A. et al. Function of the alkali metallic cation within the early levels of crystallization of halide perovskites. Chem. Mater. 34, 1121–1131 (2022).

    Article 

    Google Scholar
     

  • Jena, A. Okay., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, standing, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, M., Ji, S.-G., Kim, G. & Seok, S. I. Perovskite precursor resolution chemistry: from fundamentals to photovoltaic functions. Chem. Soc. Rev. 48, 2011–2038 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Quintero-Bermudez, R. et al. Compositional and orientational management in metallic halide perovskites of decreased dimensionality. Nat. Mater. 17, 900–907 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Uniform permutation of quasi-2D perovskites by vacuum poling for environment friendly, high-fill-factor photo voltaic cells. Joule 3, 3061–3071 (2019).

    Article 

    Google Scholar
     

  • Peng, W. et al. Decreasing nonradiative recombination in perovskite photo voltaic cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Secure excessive effectivity two-dimensional perovskite photo voltaic cells by way of cesium doping. Vitality Environ. Sci. 10, 2095–2102 (2017).

    Article 

    Google Scholar
     

  • Guo, Z. et al. Selling power switch by way of manipulation of crystallization kinetics of quasi-2D perovskites for environment friendly inexperienced light-emitting diodes. Adv. Mater. 33, 2102246 (2021).

    Article 

    Google Scholar
     

  • Wang, J. et al. Colloidal zeta potential modulation as a deal with to manage the crystallization kinetics of tin halide perovskites for photovoltaic functions. Angew. Chem. Int. Ed. 63, e202317794 (2024).

    Article 

    Google Scholar
     

  • Meng, X. et al. Crystallization kinetics modulation of FASnI3 movies with pre-nucleation clusters for environment friendly lead-free perovskite photo voltaic cells. Angew. Chem. Int. Ed. 60, 3693–3698 (2021).

    Article 

    Google Scholar
     

  • Polte, J. Elementary progress rules of colloidal metallic nanoparticles – a brand new perspective. CrystEngComm 17, 6809–6830 (2015).

    Article 

    Google Scholar
     

  • Ohshima, H. Approximate analytic expression for the steadiness ratio of colloidal dispersions. Colloid Polym. Sci. 292, 2269–2274 (2014).

    Article 

    Google Scholar
     

  • Wang, J. et al. Templated progress of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11, 582 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J.-W. et al. Strong-phase hetero epitaxial progress of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, C. et al. Side orientation tailoring by way of 2D-seed-induced progress permits extremely environment friendly and steady perovskite photo voltaic cells. Joule 6, 240–257 (2022).

    Article 

    Google Scholar
     

  • Wang, J. et al. Oriented attachment of tin halide perovskites for photovoltaic functions. ACS Vitality Lett. 8, 1590–1596 (2023).

    Article 

    Google Scholar
     

  • Sidhik, S. et al. Two-dimensional perovskite templates for sturdy, environment friendly formamidinium perovskite photo voltaic cells. Science 384, 1227–1235 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. Additive engineering with 2,8-dibromo-dibenzothiophene-S,S-dioxide enabled tin-based perovskite photo voltaic cells with 14.98% energy conversion effectivity. Vitality Environ. Sci. 17, 2837–2844 (2024).

    Article 

    Google Scholar
     

  • Jokar, E. et al. Gradual passivation and inverted hysteresis for hybrid tin perovskite photo voltaic cells attaining 13.5% by way of sequential deposition. J. Phys. Chem. Lett. 12, 10106–10111 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Sturdy stability of environment friendly lead-free formamidinium tin iodide perovskite photo voltaic cells realized by structural regulation. J. Phys. Chem. Lett. 9, 6999–7006 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, P. et al. Aqueous synthesis of perovskite precursors for extremely environment friendly perovskite photo voltaic cells. Science 383, 524–531 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Unveiling the operation mechanism of layered perovskite photo voltaic cells. Nat. Commun. 10, 1008 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Extremely-high open-circuit voltage of tin perovskite photo voltaic cells by way of an electron transporting layer design. Nat. Commun. 11, 1245 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghahremanirad, E., Bou, A., Olyaee, S. & Bisquert, J. Inductive loop within the impedance response of perovskite photo voltaic cells defined by floor polarization mannequin. J. Phys. Chem. Lett. 8, 1402–1406 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Chemo-thermal floor dedoping for high-performance tin perovskite photo voltaic cells. Matter 5, 683–693 (2022).

    Article 

    Google Scholar
     

  • Nasti, G. et al. Pyridine managed tin perovskite crystallization. ACS Vitality Lett. 7, 3197–3203 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Excessive open circuit voltage over 1 V achieved in tin-based perovskite photo voltaic cells with a 2D/3D vertical heterojunction. Adv. Sci. 9, 2200242 (2022).

    Article 

    Google Scholar
     

  • Solar, C. et al. Properly-defined fullerene bisadducts allow high-performance tin-based perovskite photo voltaic cells. Adv. Mater. 35, 2205603 (2023).

    Article 

    Google Scholar
     

  • FluorEssence Model 3.9.1.16 (Horiba Scientific, 2012); https://www.horiba.com/int/scientific/merchandise/element/motion/present/Product/fluoressence-1378

  • Leave a Reply

    Your email address will not be published. Required fields are marked *