Suo, L. et al. “Water-in-salt” electrolyte allows high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Xu, Ok. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).
Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).
Cao, L. et al. Solvation construction design for aqueous Zn steel batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).
Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Vitality 7, 186–193 (2022).
Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).
Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery built-in aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).
Wang, Y., He, P. & Zhou, H. A lithium–air capacitor–battery based mostly on a hybrid electrolyte. Vitality Environ. Sci. 4, 4994–4999 (2011).
Bai, S., Liu, X., Zhu, Ok., Wu, S. & Zhou, H. Steel–natural framework-based separator for lithium–sulfur batteries. Nat. Vitality 1, 16094 (2016).
Qiao, Y. et al. Superior hybrid electrolyte Li-O2 battery realized by twin superlyophobic membrane. Joule 3, 2986–3001 (2019).
Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium steel extraction from seawater. Joule 2, 1648–1651 (2018).
Chao, D. & Qiao, S.-Z. Towards high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).
Jackson, D. T. & Nelson, P. N. Preparation and properties of some ion selective membranes: a assessment. J. Mol. Struct. 1182, 241–259 (2019).
Busche, M. R. et al. Dynamic formation of a solid-liquid electrolyte interphase and its penalties for hybrid-battery ideas. Nat. Chem. 8, 426–434 (2016).
Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and robust orientation results. Science 292, 908–912 (2001).
Benjamin, I. Recombination, dissociation, and transport of ion pairs throughout the liquid/liquid interface. Implications for section switch catalysis. J. Phys. Chem. B 117, 4325–4331 (2013).
Volkov, A. G. in Interfacial Catalysis (ed. Volkov, A. G.) Ch. 1 (CRC Press, 2002).
Shirakawa, S. & Maruoka, Ok. Latest developments in uneven phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).
Suo, L. et al. Superior high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 128, 7252–7257 (2016).
Fakhari, A. R. & Shamsipur, M. An NMR research of the stoichiometry and stability of lithium ion complexes with 12-crown-4, 15-crown-5 and 18-crown-6 in binary acetonitrile-nitrobenzene mixtures. J. Incl. Phenom. Macrocycl. Chem. 26, 243–251 (1996).
Shamsipur, M. & Madrakian, T. Aggressive NMR research of the complexation of some alkaline earth and transition steel ions with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile answer utilizing the lithium-7 nucleus as a probe. J. Coord. Chem. 52, 139–149 (2000).
MacFarlane, D. R. et al. On the idea of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).
Morrison, P. W. et al. Crown ethers: novel permeability enhancers for ocular drug supply? Mol. Pharm. 14, 3528–3538 (2017).
Gierczyk, B., Zalas, M. & Otłowski, T. Excessive-energetic salts and steel complexes: complete overview with a concentrate on use in do-it-yourself explosives (HME). Molecules 29, 5588 (2024).
Betz, J. et al. Theoretical versus sensible vitality: a plea for extra transparency within the vitality calculation of various rechargeable battery techniques. Adv. Vitality Mater. 9, 1803170 (2019).
Choi, J. W. & Aurbach, D. Promise and actuality of post-lithium-ion batteries with excessive vitality densities. Nat. Rev. Mater. 1, 1–16 (2016).
Chao, D. et al. Roadmap for superior aqueous batteries: from design of supplies to purposes. Sci. Adv. 6, eaba4098 (2020).
Anuphappharadorn, S., Sukchai, S., Sirisamphanwong, C. & Ketjoy, N. Comparability the financial evaluation of the battery between lithium-ion and lead-acid in PV stand-alone software. Vitality Procedia 56, 352–358 (2014).
Logan, M. W. et al. UV-cured eutectic gel polymer electrolytes for secure and sturdy Li-ion batteries. J. Am. Chem. Soc. 8, 8485–8495 (2020).
Zhang, J. et al. “Water-in-salt” polymer electrolyte for Li-ion batteries. Vitality Environ. Sci. 13, 2878–2887 (2020).
Meddings, N. et al. Software of electrochemical impedance spectroscopy to industrial Li-ion cells: a assessment. J. Energy Sources 480, 228742 (2020).
Borodin, O. Polarizable drive discipline growth and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).
Borodin, O. et al. Insights into the construction and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C. 122, 20108–20121 (2018).
Glaser, R., Borodin, O., Johnson, B., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li-S batteries by utilizing localized low focus extremely fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).
Murata, J. et al. Vapor pressures of hydrofluoroethers. J. Chem. Eng. Knowledge 47, 911–915 (2002).
Gaussian 16 Rev. C.01. (Gaussian, 2016).
Alvarado, J. et al. Bisalt ether electrolytes: a pathway in direction of lithium steel batteries with Ni-rich cathodes. Vitality Environ. Sci. 12, 780–794 (2019).
Yang, Y. et al. Excessive-efficiency lithium-metal anode enabled by liquefied fuel electrolytes. Joule 3, 1986–2000 (2019).
Steinrück, H.-G. et al. Focus and velocity profiles in a polymeric lithium-ion battery electrolyte. Vitality Environ. Sci. 13, 4312–4321 (2020).
Nakayama, Y. Nonlinear dielectric decrement of electrolyte options: an efficient medium strategy. J. Colloid Interface Sci. 646, 354–360 (2023).
Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation research of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).
Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free vitality of solvation from cluster-ion solvation information. J. Phys. Chem. A 102, 7787–7794 (1998).
Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Aqueous solvation free energies of ions and ion–water clusters based mostly on an correct worth for absolutely the aqueous solvation free vitality of the proton. J. Phys. Chem. B 110, 16066–16081 (2006).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Common solvation mannequin based mostly on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Chai, J.-D. & Head-Gordon, M. Lengthy-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Greg, L., Paolo, T., and Brian, Ok. rdkit/rdkit: 2022_09_3 (Q3 2022) Launch (Release_2022_09_3). Zenodo https://zenodo.org/report/7415128 (2022).