Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).
Wan, J. et al. Ultrathin, versatile, strong polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).
Choudhury, S. Strong-state polymer electrolytes for high-performance lithium steel batteries. Nat. Commun. 10, 4398 (2019).
Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Growing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).
Dong, T. et al. A multifunctional polymer electrolyte permits ultra-long cycle-life in a high-voltage lithium steel battery. Power Environ. Sci. 11, 1197–1203 (2018).
Zhao, Q., Liu, X., Stalin, S., Khan, Ok. & Archer, L. A. Strong-state polymer electrolytes with in-built quick interfacial transport for secondary lithium batteries. Nat. Power 4, 365–373 (2019).
Hatzell, Ok. B. et al. Challenges in lithium steel anodes for solid-state batteries. ACS Power Lett. 5, 922–934 (2020).
Wang, X. et al. Towards high-energy-density lithium steel batteries: alternatives and challenges for strong natural electrolytes. Adv. Mater. 32, 1905219 (2020).
Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured strong electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).
Lu, G. et al. Commerce-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Power 5, e287 (2023).
Gu, Y. et al. Excessive toughness, excessive conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).
Cho, B. Ok., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in prolonged amphiphilic dendrons. Science 305, 1598–1601 (2004).
Grundy, L. S. et al. Inaccessible polarization-induced section transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting present. Macromolecules 55, 7637–7649 (2022).
Galluzzo, M. D., Bathroom, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic construction and section habits of a block copolymer electrolyte beneath dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).
Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer options. Macromolecules 43, 3750–3756 (2010).
Gomez, E. D. et al. Impact of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).
Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, Ok. I. Community construction and powerful microphase separation for top ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).
Koerver, R. et al. Chemo-mechanical enlargement of lithium electrode supplies—on the path to mechanically optimized all-solid-state batteries. Power Environ. Sci. 11, 2142–2158 (2018).
Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Power Lett. 4, 591–599 (2019).
Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries utilizing operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).
Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Power Lett. 4, 1475–1483 (2019).
Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Traits Chem. 1, 845–857 (2019).
Sharon, D. et al. Molecular stage variations in ionic solvation and transport habits in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).
Chintapalli, M. et al. Construction and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes within the excessive salt focus restrict. Macromolecules 49, 1770–1780 (2016).
Shen, Ok. H. & Corridor, L. M. Ion conductivity and correlations in mannequin salt-doped polymers: results of interplay energy and focus. Macromolecules 53, 3655–3668 (2020).
Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic towards Sand’s time in strong polymer electrolytes. Mater. Right now Power 27, 101037 (2022).
Lee, Y., Ma, B. & Bai, P. Focus polarization and steel dendrite initiation in remoted electrolyte microchannels. Power Environ. Sci. 13, 3504–3513 (2020).
Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium progress by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).
Devaux, D. et al. Failure mode of lithium steel batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).
Kaboli, S. et al. Habits of strong electrolyte in Li-polymer battery with NMC cathode through in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).
Harry, Ok. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface buildings beneath dendrites fashioned on cycled lithium steel electrodes. Nat. Mater. 13, 69–73 (2013).
Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).
Maslyn, J. A. et al. Development of lithium dendrites and globules by a strong block copolymer electrolyte as a perform of present density. J. Phys. Chem. C 122, 26797–26804 (2018).
Harry, Ok. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping habits of lithium steel throughout a inflexible block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).
Andersson, E. Ok. W. et al. Early-stage decomposition of strong polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).
Zhang, X. et al. Multi-scale characterization strategies for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).
Bostwick, J. E. et al. Ionic interactions management the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).
Yu, D. et al. Room temperature to 150 °C lithium steel batteries enabled by a inflexible molecular ionic composite electrolyte. Adv. Power Mater. 11, 2003559 (2021).
Fox, R. J. et al. Nanofibrillar ionic polymer composites allow high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).
Wang, Y. et al. Extremely conductive and thermally secure ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).
Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).
Wang, Y. et al. Strong-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).
Wang, Y. Double helical conformation and excessive rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).
Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular construction and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).
Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Revolutionary electrolytes based mostly on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).
Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes utilizing extremely concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).
Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast strong electrolyte membranes based mostly on a charged rigid-rod polymer and ionic liquids. ACS Appl. Power Mater. 4, 6599–6605 (2021).
Dong, Q. et al. Insights into the twin function of lithium difluoro(oxalato)borate additive in enhancing the electrochemical efficiency of NMC811||graphite cells. ACS Appl. Power Mater. 3, 695–704 (2020).
Gao, H., Maglia, F., Lamp, P., Amine, Ok. & Chen, Z. Mechanistic research of electrolyte components to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).
Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing impact of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).
Yu, X. et al. Direct statement of the redistribution of sulfur and polysulfides in Li-S batteries throughout first cycle by in situ X-ray fluorescence microscopy. Adv. Power Mater. 5, 1500072 (2015).
Freiberg, A. T. S. et al. Species in lithium-sulfur batteries utilizing spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).
Solar, B. et al. On the polymer electrolyte interfaces: the function of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).
Vairavamurthy, A. Utilizing X-ray absorption to probe sulfur oxidation states in complicated molecules. Spectrochim. Acta A 54, 2009–2017 (1998).
Lin, Z. et al. Excessive-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Power 9, 408–416 (2014).
Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur Ok-edge X-ray absorption spectroscopy for figuring out the chemical speciation of sulfur in organic programs. FEBS Lett. 441, 11–14 (1998).
Dey, A. et al. Sulfur Ok-edge XAS and DFT calculations on nitrile hydratase: geometric and digital construction of the non-heme iron energetic web site. J. Am. Chem. Soc. 128, 533–541 (2006).
Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Internal shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).
Jalilehvand, F. Sulfur: not a “silent” ingredient any extra. Chem. Soc. Rev. 35, 1256–1268 (2006).