Switching on and off the spin polarization of the conduction band in antiferromagnetic bilayer transistors

Switching on and off the spin polarization of the conduction band in antiferromagnetic bilayer transistors


  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazin, I. Altermagnetism—a brand new punch line of basic magnetism. Phys. Rev. X 12, 040002 (2022).


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Rising analysis panorama of altermagnetism. Phys. Rev. X 12, 040501 (2022).

  • Yan, H., Zhou, X., Qin, P. & Liu, Z. Evaluation on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).

    Article 

    Google Scholar
     

  • Sinova, J. et al. Spin Corridor results. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 

    Google Scholar
     

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Massive anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Layer Corridor impact in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Šmejkal, L. et al. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Corridor impact in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 

    Google Scholar
     

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized present in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, L.-D. et al. Big momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 

    Google Scholar
     

  • Zhu, Y.-P. et al. Commentary of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, Okay. S. Magnetic 2D supplies and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure gadgets. Science 363, eaav4450 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mak, Okay. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity results in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sierra, J. F. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kurebayashi, H. et al. Magnetism, symmetry and spin transport in van der Waals layered methods. Nat. Rev. Phys. 4, 150–166 (2022).

    Article 

    Google Scholar
     

  • Gong, S. J. et al. Electrically induced 2D half-metallic antiferromagnets and spin area impact transistors. Proc. Natl Acad. Sci. USA 115, 8511–8516 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H., Niu, Y., Wu, X. & Yang, J. Electrical-field tunable magnetism in van der Waals bilayers with A-type antiferromagnetic order: unipolar versus bipolar magnetic semiconductor. Nano Lett. 21, 7050–7055 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 5, 034005 (2021).

    Article 

    Google Scholar
     

  • Dang, W. et al. Electrical-field-tunable spin polarization and carrier-transport anisotropy in an A-type antiferromagnetic van der Waals bilayer. Phys. Rev. Appl. 18, 064086 (2022).

    Article 

    Google Scholar
     

  • Marian, D. et al. Electrically tunable lateral spin-valve transistor based mostly on bilayer CrI3. npj 2D Mater. Appl. 7, 42 (2023).

    Article 

    Google Scholar
     

  • Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene gadgets. Nat. Mater. 7, 151–157 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Direct remark of a broadly tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Electrical management of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S., Shan, J. & Mak, Okay. F. Electrical-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Calder, S. et al. Magnetic construction and trade interactions within the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).

    Article 

    Google Scholar
     

  • Peng, Y. et al. Magnetic construction and metamagnetic transitions within the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).

    Article 

    Google Scholar
     

  • Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically skinny van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, e2211653 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, F. et al. Magnetism-induced band-edge shift because the mechanism for magnetoconductance in CrPS4 transistors. Nano Lett. 23, 8140–8145 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Very giant tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Gutierrez-Lezama, I. & Morpurgo, A. F. Magneto-transport research in 2D magnetic semiconductor multi-terminal FET. Zenodo https://doi.org/10.5281/zenodo.12702065 (2024).

  • Chang, J.-F. et al. Corridor-effect measurements probing the diploma of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Figuring out the section diagram of atomically skinny layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yao, F. et al. A number of antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers. Nat. Commun. 14, 4969 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M. et al. Steady manipulation of magnetic anisotropy in a van der Waals ferromagnet by way of electrical gating. Nat. Electron. 6, 28–36 (2023).


    Google Scholar
     

  • Clark, A. E. & Callen, E. Néel ferrimagnets in giant magnetic fields. J. Appl. Phys. 39, 5972–5982 (1968).

    Article 

    Google Scholar
     

  • Coey, J. M. Magnetism and Magnetic Supplies (Cambridge Univ. Press, 2010).

  • Zhuang, H. L. & Zhou, J. Density useful idea research of bulk and single-layer magnetic semiconductor CrPS4. Phys. Rev. B 94, 195307 (2016).

    Article 

    Google Scholar
     

  • Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16, 11876–11883 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program mission for quantum simulations of supplies. J. Condens. Matter Phys. 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Prandini, G. et al. Precision and effectivity in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).

    Article 

    Google Scholar
     

  • Sohier, T., Calandra, M. & Mauri, F. Density useful perturbation idea for gated two-dimensional heterostructures: theoretical developments and utility to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *