Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Mazin, I. Altermagnetism—a brand new punch line of basic magnetism. Phys. Rev. X 12, 040002 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Rising analysis panorama of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Yan, H., Zhou, X., Qin, P. & Liu, Z. Evaluation on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).
Sinova, J. et al. Spin Corridor results. Rev. Mod. Phys. 87, 1213–1260 (2015).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Nakatsuji, S., Kiyohara, N. & Higo, T. Massive anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Gao, A. et al. Layer Corridor impact in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).
Šmejkal, L. et al. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Feng, Z. et al. An anomalous Corridor impact in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized present in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Yuan, L.-D. et al. Big momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Zhu, Y.-P. et al. Commentary of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, Okay. S. Magnetic 2D supplies and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure gadgets. Science 363, eaav4450 (2019).
Mak, Okay. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).
Huang, B. et al. Emergent phenomena and proximity results in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
Sierra, J. F. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).
Kurebayashi, H. et al. Magnetism, symmetry and spin transport in van der Waals layered methods. Nat. Rev. Phys. 4, 150–166 (2022).
Gong, S. J. et al. Electrically induced 2D half-metallic antiferromagnets and spin area impact transistors. Proc. Natl Acad. Sci. USA 115, 8511–8516 (2018).
Lv, H., Niu, Y., Wu, X. & Yang, J. Electrical-field tunable magnetism in van der Waals bilayers with A-type antiferromagnetic order: unipolar versus bipolar magnetic semiconductor. Nano Lett. 21, 7050–7055 (2021).
Deng, J. et al. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 5, 034005 (2021).
Dang, W. et al. Electrical-field-tunable spin polarization and carrier-transport anisotropy in an A-type antiferromagnetic van der Waals bilayer. Phys. Rev. Appl. 18, 064086 (2022).
Marian, D. et al. Electrically tunable lateral spin-valve transistor based mostly on bilayer CrI3. npj 2D Mater. Appl. 7, 42 (2023).
Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene gadgets. Nat. Mater. 7, 151–157 (2008).
Zhang, Y. et al. Direct remark of a broadly tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
Huang, B. et al. Electrical management of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).
Jiang, S., Shan, J. & Mak, Okay. F. Electrical-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).
Calder, S. et al. Magnetic construction and trade interactions within the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).
Peng, Y. et al. Magnetic construction and metamagnetic transitions within the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).
Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically skinny van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).
Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, e2211653 (2023).
Wu, F. et al. Magnetism-induced band-edge shift because the mechanism for magnetoconductance in CrPS4 transistors. Nano Lett. 23, 8140–8145 (2023).
Wang, Z. et al. Very giant tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).
Li, J., Gutierrez-Lezama, I. & Morpurgo, A. F. Magneto-transport research in 2D magnetic semiconductor multi-terminal FET. Zenodo https://doi.org/10.5281/zenodo.12702065 (2024).
Chang, J.-F. et al. Corridor-effect measurements probing the diploma of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).
Wang, Z. et al. Figuring out the section diagram of atomically skinny layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).
Yao, F. et al. A number of antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers. Nat. Commun. 14, 4969 (2023).
Tang, M. et al. Steady manipulation of magnetic anisotropy in a van der Waals ferromagnet by way of electrical gating. Nat. Electron. 6, 28–36 (2023).
Clark, A. E. & Callen, E. Néel ferrimagnets in giant magnetic fields. J. Appl. Phys. 39, 5972–5982 (1968).
Coey, J. M. Magnetism and Magnetic Supplies (Cambridge Univ. Press, 2010).
Zhuang, H. L. & Zhou, J. Density useful idea research of bulk and single-layer magnetic semiconductor CrPS4. Phys. Rev. B 94, 195307 (2016).
Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16, 11876–11883 (2022).
Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program mission for quantum simulations of supplies. J. Condens. Matter Phys. 21, 395502 (2009).
Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Prandini, G. et al. Precision and effectivity in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).
Sohier, T., Calandra, M. & Mauri, F. Density useful perturbation idea for gated two-dimensional heterostructures: theoretical developments and utility to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).