Lewis, L. M., Badkar, A. V., Cirelli, D., Combs, R. & Lerch, T. F. The race to develop the Pfizer–BioNTech COVID-19 vaccine: from the pharmaceutical scientists’ perspective. J. Pharm. Sci. 112, 640–647 (2023).
Thorn, C. R. et al. The journey of a lifetime — growth of Pfizer’s COVID-19 vaccine. Curr. Opin. Biotechnol. 78, 102803 (2022).
Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078–1094 (2021).
Cullis, P. R. & Hope, M. J. Lipid nanoparticle programs for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017). A foundational overview article that explains the basic design rules for LNPs and their proposed mechanism of motion.
Swaminathan, G. et al. A novel lipid nanoparticle adjuvant considerably enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 34, 110–119 (2016).
Zhang, Y., Solar, C., Wang, C., Jankovic, Okay. E. & Dong, Y. Lipids and lipid derivatives for RNA supply. Chem. Rev. 121, 12181–12277 (2021). An exhaustive overview of lipids which have been utilized in LNPs for nucleic acid supply, with an outline of the design rules for every lipid class.
Hald Albertsen, C. et al. The position of lipid elements in lipid nanoparticles for vaccines and gene remedy. Adv. Drug Deliv. Rev. 188, 114416 (2022).
Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).
Steering for Trade: Nonclinical Research for the Security Analysis of Pharmaceutical Excipients (US FDA, 2005); https://www.fda.gov/media/72260/obtain
Guideline on Excipients within the File for Software for Advertising Authorisation of a Medicinal Product EMEA/CHMP/QWP/396951/2006 (EMA, 2007); https://www.ema.europa.eu/en/paperwork/scientific-guideline/guideline-excipients-dossier-application-marketing-authorisation-medicinal-product-revision-2_en.pdf
Elder, D. P., Kuentz, M. & Holm, R. Pharmaceutical excipients — high quality, regulatory and biopharmaceutical concerns. Eur. J. Pharm. Sci. 87, 88–99 (2016).
Kozarewicz, P. & Loftsson, T. Novel excipients – regulatory challenges and views – the EU perception. Int. J. Pharm. 546, 176–179 (2018).
Koo, O. M. & Varia, S. A. Case research with new excipients: growth, implementation and regulatory approval. Ther. Deliv. 2, 949–956 (2011).
Yu, Y. B., Taraban, M. B., Briggs, Okay. T., Brinson, R. G. & Marino, J. P. Excipient innovation via precompetitive analysis. Pharm. Res. 38, 2179–2184 (2021).
John, R., Monpara, J., Swaminathan, S. & Kalhapure, R. Chemistry and artwork of creating lipid nanoparticles for biologics supply: concentrate on growth and scale-up. Pharmaceutics 16, 131 (2024).
Onpattro (Patisiran) Lipid Advanced Injection, for Intravenous Use [Package Insert] (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/210922s012lbl.pdf
Committee for Medicinal Merchandise for Human Use. Onpattro Evaluation Report EMA/554262/2018 (EMA, 2018); https://www.ema.europa.eu/en/paperwork/assessment-report/onpattro-epar-public-assessment-report_.pdf
Drug Approval Package deal: Onpattro (patisiran) (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000TOC.cfm. The drug approval package deal for Onpattro—an LNP accredited by the US FDA for industrial use, and the one one through the NDA pathway.
Abstract Foundation for Regulatory Motion: Comirnaty (US FDA, 2021); https://www.fda.gov/media/151733/obtain. The abstract foundation of approval for Comirnaty—the second LNP accredited (through emergency-use authorization) by the US FDA for industrial use, this time through the BLA pathway.
Comirnaty (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2021); https://www.fda.gov/media/151707/obtain
Committee for Medicinal Merchandise for Human Use. Comirnaty Evaluation Report EMA/707383/2020 Corr.2 (EMA, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
Spikevax (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2022); https://www.fda.gov/media/155675/obtain
Abstract Foundation for Regulatory Motion: Spikevax (US FDA, 2022); https://www.fda.gov/media/155931/obtain. The abstract foundation of approval for Spikevax—the third LNP accredited (through emergency-use authorization) by the US FDA for industrial use, and the second through the BLA pathway.
Committee for Medicinal Merchandise for Human Use. COVID-19 Vaccine Moderna Evaluation Report EMA/15689/2021 Corr.1 (EMA, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf
Hemmrich, E. & McNeil, S. Energetic ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023). A perspective that highlights the inconsistency in how elements inside nanomedicines could also be categorised as excipients or part of the energetic ingredient.
Steering for Trade: Liposome Drug Merchandise (US FDA, 2018); https://www.fda.gov/media/70837/obtain. Probably the most complete regulatory steering doc on lipid excipients, with a concentrate on their use in liposome drug merchandise.
Committee for Medicinal Merchandise for Human Use. Guideline on the Chemistry of Energetic Substances EMA/454576/2016 (EMA, 2016); https://www.ema.europa.eu/en/paperwork/scientific-guideline/guideline-chemistry-active-substances_en.pdf
Committee for Human Medicinal Merchandise. Reflection Paper on the Knowledge Necessities for Intravenous Liposomal Merchandise Developed with Reference to an Innovator Liposomal Product EMA/CHMP/806058/2009/Rev. 02 (EMA, 2013); https://www.ema.europa.eu/en/paperwork/scientific-guideline/reflection-paper-data-requirements-intravenous-liposomal-products-developed-reference-innovator_en.pdf
Analysis of the High quality, Security and Efficacy of Messenger RNA Vaccines for the Prevention of Infectious Ailments: Regulatory Concerns (World Well being Group, 2021); https://cdn.who.int/media/docs/default-source/biologicals/ecbs/post-ecbs-who-regulatory-considerations-document-for-mrna-vaccines—final-version—29-nov-2021_tz.pdf. The regulatory steering doc that almost all particularly outlines CMC expectations for LNPs, albeit not from a well being authority accountable for the approval of medical or industrial submitting functions.
Qualification of Excipients for Use in Prescribed drugs (Worldwide Pharmaceutical Excipients Council, 2020); https://www.ipec-europe.org/uploads/publications/20201026-eq-guide-revision-final-1615800052.pdf
The Joint Good Manufacturing Practices Information for Pharmaceutical Excipients Model 5 (Worldwide Pharmaceutical Excipients Council, Pharmaceutical High quality Group, 2022); https://www.ipec-europe.org/articles/ipec-pqg-gmp-guide.html
Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: construction and stability. Int. J. Pharm. 601, 120586 (2021).
Oude Blenke, E. et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a chilly case. J. Pharm. Sci. 112, 386–403 (2023).
Musakhanian, J., Rodier, J.-D. & Dave, M. Oxidative stability in lipid formulations: a overview of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech 23, 151 (2022).
De, A. & Ko, Y. T. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Knowledgeable Opin. Drug Deliv. 20, 175–187 (2023).
Wang, C., Gamage, P. L., Jiang, W. & Mudalige, T. Excipient-related impurities in liposome drug merchandise. Int. J. Pharm. 657, 124164 (2024).
Kleintop, B. et al. GMPs for technique validation in early growth: an {industry} perspective (half II). Pharm. Technol. https://www.pharmtech.com/view/gmps-method-validation-early-development-industry-perspective-part-ii (2012).
Harvey, J. et al. Administration of natural impurities in small molecule medicinal merchandise: deriving secure limits to be used in early growth. Regul. Toxicol. Pharmacol. 84, 116–123 (2017). A commentary that outlines impurity management methods which may be utilized in early medical growth, which can be thought of for lipid excipients in LNPs.
Steering for Trade: Q3A Impurities in New Drug Substances (US FDA, 2008); https://www.fda.gov/media/71727/obtain
Steering for Trade: M4Q: The CTD — High quality (US FDA, 2001); https://www.fda.gov/media/71581/obtain
Steering for Trade: Drug Grasp Information (US FDA, 2019); https://www.fda.gov/media/131861/obtain
Biologics license functions and grasp information. Fed. Reg. 89, 9743–9757 (12 February 2024); https://www.govinfo.gov/content material/pkg/FR-2024-02-12/pdf/2024-02741.pdf
Steering for Trade: Q2(R2) Validation of Analytical Procedures (US FDA, 2022); https://www.fda.gov/media/161201/obtain
Steering for Trade: Q3C Impurities: Residual Solvents (US FDA, 1997); https://www.fda.gov/media/71736/obtain
Steering for Trade: Q3D(R2) Elemental Impurities (US FDA, 2022); https://www.fda.gov/media/148474/obtain
Steering for Trade: Management of Nitrosamine Impurities in Human Medication (US FDA, 2021); https://www.fda.gov/media/141720/obtain
Raffaele, J., Loughney, J. W. & Rustandi, R. R. Growth of a microchip capillary electrophoresis technique for dedication of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophoresis 43, 1101–1106 (2022).
Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the lack of mRNA exercise in lipid nanoparticle supply programs. Nat. Commun. 12, 6777 (2021). An modern analysis article that highlighted how reactions between a nucleic acid and lipid in an LNP can affect product high quality and manufacturing management methods.
Kinsey, C. et al. Dedication of lipid content material and stability in lipid nanoparticles utilizing extremely high-performance liquid chromatography together with a corona charged aerosol detector. Electrophoresis 43, 1091–1100 (2022).
Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle supply of CRISPR–Cas9 ribonucleoproteins for efficient tissue particular genome enhancing. Nat. Commun. 11, 3232 (2020).
Kasiewicz, L. N. et al. GalNAc-Lipid nanoparticles allow non-LDLR dependent hepatic supply of a CRISPR base enhancing remedy. Nat. Commun. 14, 2776 (2023).
Dilliard, S. A. & Siegwart, D. J. Passive, energetic and endogenous organ-targeted lipid and polymer nanoparticles for supply of genetic medication. Nat. Rev. Mater. 8, 282–300 (2023).
Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).
Steering for Trade: Chemistry, Manufacturing, and Management (CMC) Info for Human Gene Remedy Investigational New Drug Functions (INDs) (US FDA, 2020); https://www.fda.gov/media/113760/obtain
Steering for Trade: Drug Merchandise, Together with Organic Merchandise, that Include Nanomaterials (US FDA, 2022); https://www.fda.gov/media/157812/obtain
Guideline for the Growth of Liposome Drug Merchandise (Japan Ministry of Well being, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_liposome_guideline.pdf
Reflection Paper on Nucleic Acids (siRNA)-loaded Nanotechnology-based Drug Merchandise (Japan Ministry of Well being, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_siRNA_RP.pdf
Wasylaschuk, W. R. et al. Analysis of hydroperoxides in frequent pharmaceutical excipients. J. Pharm. Sci. 96, 106–116 (2007).
Garner, J. et al. A protocol for assay of poly(lactide-co-glycolide) in medical merchandise. Int. J. Pharm. 495, 87–92 (2015).
Yanez Arteta, M. et al. Profitable reprogramming of mobile protein manufacturing via mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).
Suzuki, Y. & Ishihara, H. Distinction within the lipid nanoparticle know-how employed in three accredited siRNA (Patisiran) and mRNA (COVID-19 vaccine) medication. Drug. Metab. Pharmacokinet. 41, 100424 (2021).
Cheng, X. & Lee, R. J. The position of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide supply. Adv. Drug Deliv. Rev. 99, 129–137 (2016).
Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the position of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).
Zhang, R. et al. Helper lipid construction influences protein adsorption and supply of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).
Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) supply of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).
Patel, S. et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat. Commun. 11, 983 (2020).
Paunovska, Okay. et al. Nanoparticles containing oxidized ldl cholesterol ship mRNA to the liver microenvironment at clinically related doses. Adv. Mater. 31, 1807748 (2019).
Li, Z. et al. Acidification-induced construction evolution of lipid nanoparticles correlates with their in vitro gene transfections. ACS Nano 17, 979–990 (2023).
Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene remedy. Bioconjug. Chem. 31, 2046–2059 (2020).
Hoang Thi, T. T. et al. The significance of poly(ethylene glycol) alternate options for overcoming PEG immunogenicity in drug supply and bioconjugation. Polymers 12, 298 (2020).
Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA supply. ACS Appl. Nano Mater. 3, 10634–10645 (2020).
Shi, D. et al. To PEGylate or to not PEGylate: immunological properties of nanomedicine’s hottest part, polyethylene glycol and its alternate options. Adv. Drug Deliv. Rev. 180, 114079 (2022).
Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (ABC) phenomenon: medical problem and approaches to handle. J. Management. Launch 172, 38–47 (2013).
Chen, B.-M., Cheng, T.-L. & Roffler, S. R. Polyethylene glycol immunogenicity: theoretical, medical, and sensible facets of anti-polyethylene glycol antibodies. ACS Nano 15, 14022–14048 (2021).
Ju, Y. et al. Anti-PEG antibodies boosted in people by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).
Bavli, Y. et al. Anti-PEG antibodies earlier than and after a primary dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Management. Launch 354, 316–322 (2023).
Münter, R. et al. Investigating era of antibodies towards the lipid nanoparticle vector following COVID-19 vaccination with an mRNA vaccine. Mol. Pharm. 20, 3356–3366 (2023).
Semple, S. C. et al. Rational design of cationic lipids for siRNA supply. Nat. Biotechnol. 28, 172–176 (2010).
Jayaraman, M. et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).
Han, X. et al. An ionizable lipid toolbox for RNA supply. Nat. Commun. 12, 7233 (2021).
Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles affect expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).
Hajj, Okay. A. et al. Branched-tail lipid nanoparticles potently ship mRNA in vivo on account of enhanced ionization at endosomal pH. Small 15, 1805097 (2019).
Han, X. et al. In situ combinatorial synthesis of degradable branched lipidoids for systemic supply of mRNA therapeutics and gene editors. Nat. Commun. 15, 1762 (2024).
Bhatia, S. N. & Dahlman, J. E. RNA supply programs. Proc. Natl Acad. Sci. USA 121, e2315789121 (2024).
Wittrup, A. et al. Visualizing lipid-formulated siRNA launch from endosomes and goal gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).
Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle efficiency via particular interactions with mRNA. Adv. Func. Mater. 32, 2106727 (2022).
Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can improve mRNA supply. J. Management. Launch 353, 270–277 (2023).
Jörgensen, A. M., Wibel, R. & Bernkop-Schnürch, A. Biodegradable cationic and ionizable cationic lipids: a roadmap for safer pharmaceutical excipients. Small 19, 2206968 (2023).
Ci, L. et al. Biodistribution of Lipid 5, mRNA, and its translated protein following intravenous administration of mRNA-encapsulated lipid nanoparticles in rats. Drug Metab. Dispos. 51, 813–823 (2023).
Burdette, D. et al. Systemic publicity, metabolism, and elimination of [14C]-labeled amino lipid, Lipid 5, after a single administration of mRNA encapsulating lipid nanoparticles to Sprague-Dawley rats. Drug Metab. Dispos. 51, 804–812 (2023).
Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the primary accredited RNA interference remedy in sufferers with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2020).
Gregoriadis, G. (ed.) Liposome Expertise: Entrapment of Medication and Different Supplies into Liposomes third edn (CRC, 2006).
Allen, T. M. & Cullis, P. R. Liposomal drug supply programs: from idea to medical functions. Adv. Drug Deliv. Rev. 65, 36–48 (2013).
Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes discovered. J. Management. Launch 160, 117–134 (2012).
Immordino, M. L., Dosio, F. & Cattel, L. Stealth liposomes: overview of the essential science, rationale, and medical functions, current and potential. Int. J. Nanomedicine 1, 297–315 (2006).
Chen, M.-L. Lipid excipients and supply programs for pharmaceutical growth: a regulatory perspective. Adv. Drug Deliv. Rev. 60, 768–777 (2008).
Mui, B. L. et al. Affect of polyethylene glycol lipid desorption charges on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).
Ldl cholesterol. In US Pharmacopeia USP29–NF24, 3314 (United States Pharmacopeial Conference, 2007).
Ldl cholesterol. In Japanese Pharmacopeia 18th edn, 749 (The Prescribed drugs and Medical Units Company, 2021).
Ldl cholesterol. In European Pharmacopoeia 7.0 1680–1681 (European Directorate for the High quality of Medicines & HealthCare (EDQM), 2008).
Ldl cholesterol for parenteral use. In European Pharmacopoeia 8.0 1874 (EDQM, 2012).
Ldl cholesterol for parenteral use. In European Pharmacopoeia 10.0 2397E (EDQM, 2020).
Ldl cholesterol for parenteral use. In European Pharmacopoeia 11.0 2397 (EDQM, 2023).