Autophagosomes coated in situ with nanodots act as customized most cancers vaccines

Autophagosomes coated in situ with nanodots act as customized most cancers vaccines


  • Kaiser, J. Personalised tumour vaccines preserve most cancers in examine. Science 356, 122 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pulendran, B. & Davis, M. M. The science and medication of human immunology. Science 369, eaay4014 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ci, T. et al. Cryo-shocked most cancers cells for focused drug supply and vaccination. Sci. Adv. 6, eabc3013 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Engineered cell-membrane-coated nanoparticles instantly current tumor antigens to advertise anticancer immunity. Adv. Mater. 32, e2001808 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Most cancers vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat. Biomed. Eng. 6, 19–31 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting method. Nat. Rev. Drug Discov. 19, 635–652 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Marar, C., Starich, B. & Wirtz, D. Extracellular vesicles in immunomodulation and tumor development. Nat. Immunol. 22, 560–570 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in most cancers: insights into tumour immunogenicity and immune evasion. Nat. Rev. Most cancers 21, 298–312 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roth, G. A. et al. Designing spatial and temporal management of vaccine responses. Nat. Rev. Mater. 7, 174–195 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, L. et al. Immunotherapy and prevention of most cancers by nanovaccines loaded with whole-cell parts of tumor tissues or cells. Adv. Mater. 33, e2104849 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic most cancers vaccines. Nat. Rev. Most cancers 21, 360–378 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, X., Cui, H., Zhang, W., Li, Z. & Gao, J. Engineered tumor cell-derived vaccines in opposition to most cancers: the artwork of combating poison with poison. Bioact. Mater. 22, 491–517 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Web page, D. B. et al. Glimpse into the longer term: harnessing autophagy to advertise antitumour immunity with the DRibbles vaccine. J. Immunother. Most cancers 4, 25 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, T. et al. Autophagy inhibition promotes faulty neosynthesized proteins storage in ALIS, and induces redirection towards proteasome processing and MHCI-restricted presentation. Autophagy 8, 350–363 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yi, Y. et al. Autophagy-assisted antigen cross-presentation: autophagosome because the argo of shared tumour-specific antigens and DAMPs. Oncoimmunology 1, 976–978 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, W. et al. Unusual attractors: DAMPs and autophagy hyperlink tumor cell demise and immunity. Cell Demise Dis. 4, e966 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamamoto, Okay. et al. Autophagy promotes immune evasion of pancreatic most cancers by degrading MHC-I. Nature 581, 100–105 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • MacNabb, B. W. et al. Dendritic cells can prime antitumour CD8+ T cell responses via main histocompatibility complicated cross-dressing. Immunity 55, 982–997.e8 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dersh, D., Holly, J. & Yewdell, J. W. Just a few good peptides: MHC class I-based most cancers immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin. Most cancers Res. 17, 7047–7057 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Environment friendly cross-presentation is dependent upon autophagy in tumor cells. Most cancers Res. 68, 6889–6895 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ye, Z. et al. Manipulation of PD-L1 endosomal trafficking promotes anticancer immunity. Adv. Sci. 10, e2206411 (2022).

    Article 

    Google Scholar
     

  • Raudenska, M., Balvan, J. & Masarik, M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a problem for autophagy-based therapy of stable cancers. Mol. Most cancers 20, 140 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, Z. F. et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression via induction of M2-like macrophages with elevated expression of PD-L1. J. Immunother. Most cancers 6, 151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanborn, R. E. et al. A pilot research of an autologous tumor-derived autophagosome vaccine with docetaxel in sufferers with stage IV non-small cell lung most cancers. J. Immunother. Most cancers 5, 103 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diao, L. & Liu, M. Rethinking antigen supply: most cancers vaccines based mostly on complete tumor cell/tissue lysate or complete tumor cell. Adv. Sci. 10, e2300121 (2023).

    Article 

    Google Scholar
     

  • Wang, H. et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl Acad. Sci. USA 112, 7015–7020 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar, H. Q. et al. PI4P-dependent focusing on of ATG14 to mature autophagosomes. Biochemistry 61, 722–729 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cebollero, E. et al. Phosphatidylinositol-3-phosphate clearance performs a key position in autophagosome completion. Curr. Biol. 22, 1545–1553 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van Niel, G., D’Angelo, G. & Raposo, G. Shedding mild on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martens, S., Nakamura, S. & Yoshimori, T. Phospholipids in autophagosome formation and fusion. J. Mol. Biol. 428, 4819–4827 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, Y. G., Codogno, P. & Zhang, H. Equipment, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shinoda, S. et al. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 12, RP92189 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laczkó-Dobos, H. et al. PtdIns4P is required for the autophagosomal recruitment of STX17 (syntaxin 17) to advertise lysosomal fusion. Autophagy 20, 1639–1650 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, D. et al. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45, 629–641 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakamura, S. & Yoshimori, T. New insights into autophagosome–lysosome fusion. J. Cell Sci. 130, 1209–1216 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Johnson, D., Qiao, Z., Uwadiunor, E. & Djire, A. Holdups in nitride MXene’s growth and limitations in advancing the sector of MXene. Small 18, e2106129 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interaction of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Debnath, J., Gammoh, N. & Ryan, Okay. M. Autophagy and autophagy-related pathways in most cancers. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clarke, A. J. & Simon, A. Okay. Autophagy within the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. In situ progress of nanoantioxidants on mobile vesicles for environment friendly reactive oxygen species elimination in acute inflammatory illnesses. Nano Right this moment 40, 101282 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murshid, A., Gong, J., Stevenson, M. A. & Calderwood, S. Okay. Warmth shock proteins and most cancers vaccines: developments previously decade and chaperoning within the decade to come back. Skilled Rev. Vaccines 10, 1553–1568 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens improve tumor management. J. Clin. Make investments. 131, e138740 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to most cancers. Nature 520, 692–696 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin, H. et al. Improvement of a most cancers vaccine utilizing in vivo click-chemistry-mediated lively lymph node accumulation for improved immunotherapy. Adv. Mater. 33, e2006007 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Music, T. et al. Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine supply. Adv. Mater. 33, e2100106 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile irritation and inflammatory illnesses. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Marichal, T. et al. DNA launched from dying host cells mediates aluminum adjuvant exercise. Nat. Med. 17, 996–1002 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gou, S. et al. Engineered nanovaccine focusing on Clec9a+ dendritic cells remarkably enhances the most cancers immunotherapy results of STING agonist. Nano Lett. 21, 9939–9950 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu, J. et al. A basic technique in direction of customized nanovaccines based mostly on fluoropolymers for postsurgical most cancers immunotherapy. Nat. Nanotechnol. 15, 1043–1052 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. A minimalist binary vaccine provider for customized postoperative most cancers vaccine remedy. Adv. Mater. 34, e2109254 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z. J., Zhuo, M. J., Li, M. S., Wang, J. Y. & Zhou, Y. C. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scr. Mater. 56, 1115–1118 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *